#include "blaswrap.h"
#include "f2c.h"

/* Subroutine */ int sdisna_(char *job, integer *m, integer *n, real *d__, 
	real *sep, integer *info)
{
/*  -- LAPACK routine (version 3.1) --   
       Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..   
       November 2006   


    Purpose   
    =======   

    SDISNA computes the reciprocal condition numbers for the eigenvectors   
    of a real symmetric or complex Hermitian matrix or for the left or   
    right singular vectors of a general m-by-n matrix. The reciprocal   
    condition number is the 'gap' between the corresponding eigenvalue or   
    singular value and the nearest other one.   

    The bound on the error, measured by angle in radians, in the I-th   
    computed vector is given by   

           SLAMCH( 'E' ) * ( ANORM / SEP( I ) )   

    where ANORM = 2-norm(A) = max( abs( D(j) ) ).  SEP(I) is not allowed   
    to be smaller than SLAMCH( 'E' )*ANORM in order to limit the size of   
    the error bound.   

    SDISNA may also be used to compute error bounds for eigenvectors of   
    the generalized symmetric definite eigenproblem.   

    Arguments   
    =========   

    JOB     (input) CHARACTER*1   
            Specifies for which problem the reciprocal condition numbers   
            should be computed:   
            = 'E':  the eigenvectors of a symmetric/Hermitian matrix;   
            = 'L':  the left singular vectors of a general matrix;   
            = 'R':  the right singular vectors of a general matrix.   

    M       (input) INTEGER   
            The number of rows of the matrix. M >= 0.   

    N       (input) INTEGER   
            If JOB = 'L' or 'R', the number of columns of the matrix,   
            in which case N >= 0. Ignored if JOB = 'E'.   

    D       (input) REAL array, dimension (M) if JOB = 'E'   
                                dimension (min(M,N)) if JOB = 'L' or 'R'   
            The eigenvalues (if JOB = 'E') or singular values (if JOB =   
            'L' or 'R') of the matrix, in either increasing or decreasing   
            order. If singular values, they must be non-negative.   

    SEP     (output) REAL array, dimension (M) if JOB = 'E'   
                                 dimension (min(M,N)) if JOB = 'L' or 'R'   
            The reciprocal condition numbers of the vectors.   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    /* System generated locals */
    integer i__1;
    real r__1, r__2, r__3;
    /* Local variables */
    static integer i__, k;
    static real eps;
    static logical decr, left, incr, sing, eigen;
    extern logical lsame_(char *, char *);
    static real anorm;
    static logical right;
    static real oldgap;
    extern doublereal slamch_(char *);
    static real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static real newgap, thresh;

    --sep;
    --d__;

    /* Function Body */
    *info = 0;
    eigen = lsame_(job, "E");
    left = lsame_(job, "L");
    right = lsame_(job, "R");
    sing = left || right;
    if (eigen) {
	k = *m;
    } else if (sing) {
	k = min(*m,*n);
    }
    if (! eigen && ! sing) {
	*info = -1;
    } else if (*m < 0) {
	*info = -2;
    } else if (k < 0) {
	*info = -3;
    } else {
	incr = TRUE_;
	decr = TRUE_;
	i__1 = k - 1;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (incr) {
		incr = incr && d__[i__] <= d__[i__ + 1];
	    }
	    if (decr) {
		decr = decr && d__[i__] >= d__[i__ + 1];
	    }
/* L10: */
	}
	if (sing && k > 0) {
	    if (incr) {
		incr = incr && 0.f <= d__[1];
	    }
	    if (decr) {
		decr = decr && d__[k] >= 0.f;
	    }
	}
	if (! (incr || decr)) {
	    *info = -4;
	}
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SDISNA", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (k == 0) {
	return 0;
    }

/*     Compute reciprocal condition numbers */

    if (k == 1) {
	sep[1] = slamch_("O");
    } else {
	oldgap = (r__1 = d__[2] - d__[1], dabs(r__1));
	sep[1] = oldgap;
	i__1 = k - 1;
	for (i__ = 2; i__ <= i__1; ++i__) {
	    newgap = (r__1 = d__[i__ + 1] - d__[i__], dabs(r__1));
	    sep[i__] = dmin(oldgap,newgap);
	    oldgap = newgap;
/* L20: */
	}
	sep[k] = oldgap;
    }
    if (sing) {
	if (left && *m > *n || right && *m < *n) {
	    if (incr) {
		sep[1] = dmin(sep[1],d__[1]);
	    }
	    if (decr) {
/* Computing MIN */
		r__1 = sep[k], r__2 = d__[k];
		sep[k] = dmin(r__1,r__2);
	    }
	}
    }

/*     Ensure that reciprocal condition numbers are not less than   
       threshold, in order to limit the size of the error bound */

    eps = slamch_("E");
    safmin = slamch_("S");
/* Computing MAX */
    r__2 = dabs(d__[1]), r__3 = (r__1 = d__[k], dabs(r__1));
    anorm = dmax(r__2,r__3);
    if (anorm == 0.f) {
	thresh = eps;
    } else {
/* Computing MAX */
	r__1 = eps * anorm;
	thresh = dmax(r__1,safmin);
    }
    i__1 = k;
    for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	r__1 = sep[i__];
	sep[i__] = dmax(r__1,thresh);
/* L30: */
    }

    return 0;

/*     End of SDISNA */

} /* sdisna_ */