#include "blaswrap.h"
#include "f2c.h"

/* Subroutine */ int dsysv_(char *uplo, integer *n, integer *nrhs, doublereal 
	*a, integer *lda, integer *ipiv, doublereal *b, integer *ldb, 
	doublereal *work, integer *lwork, integer *info)
{
/*  -- LAPACK driver routine (version 3.1) --   
       Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..   
       November 2006   


    Purpose   
    =======   

    DSYSV computes the solution to a real system of linear equations   
       A * X = B,   
    where A is an N-by-N symmetric matrix and X and B are N-by-NRHS   
    matrices.   

    The diagonal pivoting method is used to factor A as   
       A = U * D * U**T,  if UPLO = 'U', or   
       A = L * D * L**T,  if UPLO = 'L',   
    where U (or L) is a product of permutation and unit upper (lower)   
    triangular matrices, and D is symmetric and block diagonal with   
    1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then   
    used to solve the system of equations A * X = B.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The number of linear equations, i.e., the order of the   
            matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrix B.  NRHS >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading   
            N-by-N upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading N-by-N lower triangular part of A contains the lower   
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   

            On exit, if INFO = 0, the block diagonal matrix D and the   
            multipliers used to obtain the factor U or L from the   
            factorization A = U*D*U**T or A = L*D*L**T as computed by   
            DSYTRF.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    IPIV    (output) INTEGER array, dimension (N)   
            Details of the interchanges and the block structure of D, as   
            determined by DSYTRF.  If IPIV(k) > 0, then rows and columns   
            k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1   
            diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,   
            then rows and columns k-1 and -IPIV(k) were interchanged and   
            D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and   
            IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and   
            -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2   
            diagonal block.   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            On entry, the N-by-NRHS right hand side matrix B.   
            On exit, if INFO = 0, the N-by-NRHS solution matrix X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The length of WORK.  LWORK >= 1, and for best performance   
            LWORK >= max(1,N*NB), where NB is the optimal blocksize for   
            DSYTRF.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   
            > 0: if INFO = i, D(i,i) is exactly zero.  The factorization   
                 has been completed, but the block diagonal matrix D is   
                 exactly singular, so the solution could not be computed.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;
    /* Local variables */
    static integer nb;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int dsytrf_(char *, integer *, doublereal *, 
	    integer *, integer *, doublereal *, integer *, integer *);
    static integer lwkopt;
    static logical lquery;
    extern /* Subroutine */ int dsytrs_(char *, integer *, integer *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *);


    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --work;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -8;
    } else if (*lwork < 1 && ! lquery) {
	*info = -10;
    }

    if (*info == 0) {
	if (*n == 0) {
	    lwkopt = 1;
	} else {
	    nb = ilaenv_(&c__1, "DSYTRF", uplo, n, &c_n1, &c_n1, &c_n1, (
		    ftnlen)6, (ftnlen)1);
	    lwkopt = *n * nb;
	}
	work[1] = (doublereal) lwkopt;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSYSV ", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Compute the factorization A = U*D*U' or A = L*D*L'. */

    dsytrf_(uplo, n, &a[a_offset], lda, &ipiv[1], &work[1], lwork, info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	dsytrs_(uplo, n, nrhs, &a[a_offset], lda, &ipiv[1], &b[b_offset], ldb,
		 info);

    }

    work[1] = (doublereal) lwkopt;

    return 0;

/*     End of DSYSV */

} /* dsysv_ */