#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int dptcon_(integer *n, doublereal *d__, doublereal *e, doublereal *anorm, doublereal *rcond, doublereal *work, integer *info) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= DPTCON computes the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite tridiagonal matrix using the factorization A = L*D*L**T or A = U**T*D*U computed by DPTTRF. Norm(inv(A)) is computed by a direct method, and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). Arguments ========= N (input) INTEGER The order of the matrix A. N >= 0. D (input) DOUBLE PRECISION array, dimension (N) The n diagonal elements of the diagonal matrix D from the factorization of A, as computed by DPTTRF. E (input) DOUBLE PRECISION array, dimension (N-1) The (n-1) off-diagonal elements of the unit bidiagonal factor U or L from the factorization of A, as computed by DPTTRF. ANORM (input) DOUBLE PRECISION The 1-norm of the original matrix A. RCOND (output) DOUBLE PRECISION The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the 1-norm of inv(A) computed in this routine. WORK (workspace) DOUBLE PRECISION array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Further Details =============== The method used is described in Nicholas J. Higham, "Efficient Algorithms for Computing the Condition Number of a Tridiagonal Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986. ===================================================================== Test the input arguments. Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer i__1; doublereal d__1; /* Local variables */ static integer i__, ix; extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *); static doublereal ainvnm; --work; --e; --d__; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } else if (*anorm < 0.) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("DPTCON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.; if (*n == 0) { *rcond = 1.; return 0; } else if (*anorm == 0.) { return 0; } /* Check that D(1:N) is positive. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (d__[i__] <= 0.) { return 0; } /* L10: */ } /* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by m(i,j) = abs(A(i,j)), i = j, m(i,j) = -abs(A(i,j)), i .ne. j, and e = [ 1, 1, ..., 1 ]'. Note M(A) = M(L)*D*M(L)'. Solve M(L) * x = e. */ work[1] = 1.; i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { work[i__] = work[i__ - 1] * (d__1 = e[i__ - 1], abs(d__1)) + 1.; /* L20: */ } /* Solve D * M(L)' * x = b. */ work[*n] /= d__[*n]; for (i__ = *n - 1; i__ >= 1; --i__) { work[i__] = work[i__] / d__[i__] + work[i__ + 1] * (d__1 = e[i__], abs(d__1)); /* L30: */ } /* Compute AINVNM = max(x(i)), 1<=i<=n. */ ix = idamax_(n, &work[1], &c__1); ainvnm = (d__1 = work[ix], abs(d__1)); /* Compute the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / ainvnm / *anorm; } return 0; /* End of DPTCON */ } /* dptcon_ */