#include "blaswrap.h"
/* dlaeda.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"

/* Table of constant values */

static integer c__2 = 2;
static integer c__1 = 1;
static doublereal c_b24 = 1.;
static doublereal c_b26 = 0.;

/* Subroutine */ int dlaeda_(integer *n, integer *tlvls, integer *curlvl, 
	integer *curpbm, integer *prmptr, integer *perm, integer *givptr, 
	integer *givcol, doublereal *givnum, doublereal *q, integer *qptr, 
	doublereal *z__, doublereal *ztemp, integer *info)
{
    /* System generated locals */
    integer i__1, i__2, i__3;

    /* Builtin functions */
    integer pow_ii(integer *, integer *);
    double sqrt(doublereal);

    /* Local variables */
    static integer i__, k, mid, ptr;
    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *);
    static integer curr, bsiz1, bsiz2, psiz1, psiz2, zptr1;
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dcopy_(integer *, 
	    doublereal *, integer *, doublereal *, integer *), xerbla_(char *, 
	     integer *);


/*  -- LAPACK routine (version 3.1) --   
       Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..   
       November 2006   


    Purpose   
    =======   

    DLAEDA computes the Z vector corresponding to the merge step in the   
    CURLVLth step of the merge process with TLVLS steps for the CURPBMth   
    problem.   

    Arguments   
    =========   

    N      (input) INTEGER   
           The dimension of the symmetric tridiagonal matrix.  N >= 0.   

    TLVLS  (input) INTEGER   
           The total number of merging levels in the overall divide and   
           conquer tree.   

    CURLVL (input) INTEGER   
           The current level in the overall merge routine,   
           0 <= curlvl <= tlvls.   

    CURPBM (input) INTEGER   
           The current problem in the current level in the overall   
           merge routine (counting from upper left to lower right).   

    PRMPTR (input) INTEGER array, dimension (N lg N)   
           Contains a list of pointers which indicate where in PERM a   
           level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)   
           indicates the size of the permutation and incidentally the   
           size of the full, non-deflated problem.   

    PERM   (input) INTEGER array, dimension (N lg N)   
           Contains the permutations (from deflation and sorting) to be   
           applied to each eigenblock.   

    GIVPTR (input) INTEGER array, dimension (N lg N)   
           Contains a list of pointers which indicate where in GIVCOL a   
           level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)   
           indicates the number of Givens rotations.   

    GIVCOL (input) INTEGER array, dimension (2, N lg N)   
           Each pair of numbers indicates a pair of columns to take place   
           in a Givens rotation.   

    GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)   
           Each number indicates the S value to be used in the   
           corresponding Givens rotation.   

    Q      (input) DOUBLE PRECISION array, dimension (N**2)   
           Contains the square eigenblocks from previous levels, the   
           starting positions for blocks are given by QPTR.   

    QPTR   (input) INTEGER array, dimension (N+2)   
           Contains a list of pointers which indicate where in Q an   
           eigenblock is stored.  SQRT( QPTR(i+1) - QPTR(i) ) indicates   
           the size of the block.   

    Z      (output) DOUBLE PRECISION array, dimension (N)   
           On output this vector contains the updating vector (the last   
           row of the first sub-eigenvector matrix and the first row of   
           the second sub-eigenvector matrix).   

    ZTEMP  (workspace) DOUBLE PRECISION array, dimension (N)   

    INFO   (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   

    Further Details   
    ===============   

    Based on contributions by   
       Jeff Rutter, Computer Science Division, University of California   
       at Berkeley, USA   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    --ztemp;
    --z__;
    --qptr;
    --q;
    givnum -= 3;
    givcol -= 3;
    --givptr;
    --perm;
    --prmptr;

    /* Function Body */
    *info = 0;

    if (*n < 0) {
	*info = -1;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLAEDA", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine location of first number in second half. */

    mid = *n / 2 + 1;

/*     Gather last/first rows of appropriate eigenblocks into center of Z */

    ptr = 1;

/*     Determine location of lowest level subproblem in the full storage   
       scheme */

    i__1 = *curlvl - 1;
    curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1;

/*     Determine size of these matrices.  We add HALF to the value of   
       the SQRT in case the machine underestimates one of these square   
       roots. */

    bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + .5);
    bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])) + 
	    .5);
    i__1 = mid - bsiz1 - 1;
    for (k = 1; k <= i__1; ++k) {
	z__[k] = 0.;
/* L10: */
    }
    dcopy_(&bsiz1, &q[qptr[curr] + bsiz1 - 1], &bsiz1, &z__[mid - bsiz1], &
	    c__1);
    dcopy_(&bsiz2, &q[qptr[curr + 1]], &bsiz2, &z__[mid], &c__1);
    i__1 = *n;
    for (k = mid + bsiz2; k <= i__1; ++k) {
	z__[k] = 0.;
/* L20: */
    }

/*     Loop thru remaining levels 1 -> CURLVL applying the Givens   
       rotations and permutation and then multiplying the center matrices   
       against the current Z. */

    ptr = pow_ii(&c__2, tlvls) + 1;
    i__1 = *curlvl - 1;
    for (k = 1; k <= i__1; ++k) {
	i__2 = *curlvl - k;
	i__3 = *curlvl - k - 1;
	curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) - 
		1;
	psiz1 = prmptr[curr + 1] - prmptr[curr];
	psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
	zptr1 = mid - psiz1;

/*       Apply Givens at CURR and CURR+1 */

	i__2 = givptr[curr + 1] - 1;
	for (i__ = givptr[curr]; i__ <= i__2; ++i__) {
	    drot_(&c__1, &z__[zptr1 + givcol[(i__ << 1) + 1] - 1], &c__1, &
		    z__[zptr1 + givcol[(i__ << 1) + 2] - 1], &c__1, &givnum[(
		    i__ << 1) + 1], &givnum[(i__ << 1) + 2]);
/* L30: */
	}
	i__2 = givptr[curr + 2] - 1;
	for (i__ = givptr[curr + 1]; i__ <= i__2; ++i__) {
	    drot_(&c__1, &z__[mid - 1 + givcol[(i__ << 1) + 1]], &c__1, &z__[
		    mid - 1 + givcol[(i__ << 1) + 2]], &c__1, &givnum[(i__ << 
		    1) + 1], &givnum[(i__ << 1) + 2]);
/* L40: */
	}
	psiz1 = prmptr[curr + 1] - prmptr[curr];
	psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
	i__2 = psiz1 - 1;
	for (i__ = 0; i__ <= i__2; ++i__) {
	    ztemp[i__ + 1] = z__[zptr1 + perm[prmptr[curr] + i__] - 1];
/* L50: */
	}
	i__2 = psiz2 - 1;
	for (i__ = 0; i__ <= i__2; ++i__) {
	    ztemp[psiz1 + i__ + 1] = z__[mid + perm[prmptr[curr + 1] + i__] - 
		    1];
/* L60: */
	}

/*        Multiply Blocks at CURR and CURR+1   

          Determine size of these matrices.  We add HALF to the value of   
          the SQRT in case the machine underestimates one of these   
          square roots. */

	bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + 
		.5);
	bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1]) 		) + .5);
	if (bsiz1 > 0) {
	    dgemv_("T", &bsiz1, &bsiz1, &c_b24, &q[qptr[curr]], &bsiz1, &
		    ztemp[1], &c__1, &c_b26, &z__[zptr1], &c__1);
	}
	i__2 = psiz1 - bsiz1;
	dcopy_(&i__2, &ztemp[bsiz1 + 1], &c__1, &z__[zptr1 + bsiz1], &c__1);
	if (bsiz2 > 0) {
	    dgemv_("T", &bsiz2, &bsiz2, &c_b24, &q[qptr[curr + 1]], &bsiz2, &
		    ztemp[psiz1 + 1], &c__1, &c_b26, &z__[mid], &c__1);
	}
	i__2 = psiz2 - bsiz2;
	dcopy_(&i__2, &ztemp[psiz1 + bsiz2 + 1], &c__1, &z__[mid + bsiz2], &
		c__1);

	i__2 = *tlvls - k;
	ptr += pow_ii(&c__2, &i__2);
/* L70: */
    }

    return 0;

/*     End of DLAEDA */

} /* dlaeda_ */