#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int dgegv_(char *jobvl, char *jobvr, integer *n, doublereal * a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, doublereal *work, integer *lwork, integer *info) { /* -- LAPACK driver routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= This routine is deprecated and has been replaced by routine DGGEV. DGEGV computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real matrix pair (A,B). Given two square matrices A and B, the generalized nonsymmetric eigenvalue problem (GNEP) is to find the eigenvalues lambda and corresponding (non-zero) eigenvectors x such that A*x = lambda*B*x. An alternate form is to find the eigenvalues mu and corresponding eigenvectors y such that mu*A*y = B*y. These two forms are equivalent with mu = 1/lambda and x = y if neither lambda nor mu is zero. In order to deal with the case that lambda or mu is zero or small, two values alpha and beta are returned for each eigenvalue, such that lambda = alpha/beta and mu = beta/alpha. The vectors x and y in the above equations are right eigenvectors of the matrix pair (A,B). Vectors u and v satisfying u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B are left eigenvectors of (A,B). Note: this routine performs "full balancing" on A and B -- see "Further Details", below. Arguments ========= JOBVL (input) CHARACTER*1 = 'N': do not compute the left generalized eigenvectors; = 'V': compute the left generalized eigenvectors (returned in VL). JOBVR (input) CHARACTER*1 = 'N': do not compute the right generalized eigenvectors; = 'V': compute the right generalized eigenvectors (returned in VR). N (input) INTEGER The order of the matrices A, B, VL, and VR. N >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA, N) On entry, the matrix A. If JOBVL = 'V' or JOBVR = 'V', then on exit A contains the real Schur form of A from the generalized Schur factorization of the pair (A,B) after balancing. If no eigenvectors were computed, then only the diagonal blocks from the Schur form will be correct. See DGGHRD and DHGEQZ for details. LDA (input) INTEGER The leading dimension of A. LDA >= max(1,N). B (input/output) DOUBLE PRECISION array, dimension (LDB, N) On entry, the matrix B. If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the upper triangular matrix obtained from B in the generalized Schur factorization of the pair (A,B) after balancing. If no eigenvectors were computed, then only those elements of B corresponding to the diagonal blocks from the Schur form of A will be correct. See DGGHRD and DHGEQZ for details. LDB (input) INTEGER The leading dimension of B. LDB >= max(1,N). ALPHAR (output) DOUBLE PRECISION array, dimension (N) The real parts of each scalar alpha defining an eigenvalue of GNEP. ALPHAI (output) DOUBLE PRECISION array, dimension (N) The imaginary parts of each scalar alpha defining an eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j). BETA (output) DOUBLE PRECISION array, dimension (N) The scalars beta that define the eigenvalues of GNEP. Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and beta = BETA(j) represent the j-th eigenvalue of the matrix pair (A,B), in one of the forms lambda = alpha/beta or mu = beta/alpha. Since either lambda or mu may overflow, they should not, in general, be computed. VL (output) DOUBLE PRECISION array, dimension (LDVL,N) If JOBVL = 'V', the left eigenvectors u(j) are stored in the columns of VL, in the same order as their eigenvalues. If the j-th eigenvalue is real, then u(j) = VL(:,j). If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and u(j+1) = VL(:,j) - i*VL(:,j+1). Each eigenvector is scaled so that its largest component has abs(real part) + abs(imag. part) = 1, except for eigenvectors corresponding to an eigenvalue with alpha = beta = 0, which are set to zero. Not referenced if JOBVL = 'N'. LDVL (input) INTEGER The leading dimension of the matrix VL. LDVL >= 1, and if JOBVL = 'V', LDVL >= N. VR (output) DOUBLE PRECISION array, dimension (LDVR,N) If JOBVR = 'V', the right eigenvectors x(j) are stored in the columns of VR, in the same order as their eigenvalues. If the j-th eigenvalue is real, then x(j) = VR(:,j). If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then x(j) = VR(:,j) + i*VR(:,j+1) and x(j+1) = VR(:,j) - i*VR(:,j+1). Each eigenvector is scaled so that its largest component has abs(real part) + abs(imag. part) = 1, except for eigenvalues corresponding to an eigenvalue with alpha = beta = 0, which are set to zero. Not referenced if JOBVR = 'N'. LDVR (input) INTEGER The leading dimension of the matrix VR. LDVR >= 1, and if JOBVR = 'V', LDVR >= N. WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,8*N). For good performance, LWORK must generally be larger. To compute the optimal value of LWORK, call ILAENV to get blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute: NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR; The optimal LWORK is: 2*N + MAX( 6*N, N*(NB+1) ). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. = 1,...,N: The QZ iteration failed. No eigenvectors have been calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) should be correct for j=INFO+1,...,N. > N: errors that usually indicate LAPACK problems: =N+1: error return from DGGBAL =N+2: error return from DGEQRF =N+3: error return from DORMQR =N+4: error return from DORGQR =N+5: error return from DGGHRD =N+6: error return from DHGEQZ (other than failed iteration) =N+7: error return from DTGEVC =N+8: error return from DGGBAK (computing VL) =N+9: error return from DGGBAK (computing VR) =N+10: error return from DLASCL (various calls) Further Details =============== Balancing --------- This driver calls DGGBAL to both permute and scale rows and columns of A and B. The permutations PL and PR are chosen so that PL*A*PR and PL*B*R will be upper triangular except for the diagonal blocks A(i:j,i:j) and B(i:j,i:j), with i and j as close together as possible. The diagonal scaling matrices DL and DR are chosen so that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to one (except for the elements that start out zero.) After the eigenvalues and eigenvectors of the balanced matrices have been computed, DGGBAK transforms the eigenvectors back to what they would have been (in perfect arithmetic) if they had not been balanced. Contents of A and B on Exit -------- -- - --- - -- ---- If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or both), then on exit the arrays A and B will contain the real Schur form[*] of the "balanced" versions of A and B. If no eigenvectors are computed, then only the diagonal blocks will be correct. [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations", by Golub & van Loan, pub. by Johns Hopkins U. Press. ===================================================================== Decode the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static doublereal c_b27 = 1.; static doublereal c_b38 = 0.; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2; doublereal d__1, d__2, d__3, d__4; /* Local variables */ static integer jc, nb, in, jr, nb1, nb2, nb3, ihi, ilo; static doublereal eps; static logical ilv; static doublereal absb, anrm, bnrm; static integer itau; static doublereal temp; static logical ilvl, ilvr; static integer lopt; static doublereal anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta; extern logical lsame_(char *, char *); static integer ileft, iinfo, icols, iwork, irows; extern /* Subroutine */ int dggbak_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *), dggbal_(char *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *); extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); static doublereal salfai; extern /* Subroutine */ int dgghrd_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); static doublereal salfar; extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); static doublereal safmin; extern /* Subroutine */ int dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *); static doublereal safmax; static char chtemp[1]; static logical ldumma[1]; extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *), dtgevc_(char *, char *, logical *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *), xerbla_(char *, integer *); static integer ijobvl, iright; static logical ilimit; extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static integer ijobvr; extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *); static doublereal onepls; static integer lwkmin; extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); static integer lwkopt; static logical lquery; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alphar; --alphai; --beta; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --work; /* Function Body */ if (lsame_(jobvl, "N")) { ijobvl = 1; ilvl = FALSE_; } else if (lsame_(jobvl, "V")) { ijobvl = 2; ilvl = TRUE_; } else { ijobvl = -1; ilvl = FALSE_; } if (lsame_(jobvr, "N")) { ijobvr = 1; ilvr = FALSE_; } else if (lsame_(jobvr, "V")) { ijobvr = 2; ilvr = TRUE_; } else { ijobvr = -1; ilvr = FALSE_; } ilv = ilvl || ilvr; /* Test the input arguments Computing MAX */ i__1 = *n << 3; lwkmin = max(i__1,1); lwkopt = lwkmin; work[1] = (doublereal) lwkopt; lquery = *lwork == -1; *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldvl < 1 || ilvl && *ldvl < *n) { *info = -12; } else if (*ldvr < 1 || ilvr && *ldvr < *n) { *info = -14; } else if (*lwork < lwkmin && ! lquery) { *info = -16; } if (*info == 0) { nb1 = ilaenv_(&c__1, "DGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb2 = ilaenv_(&c__1, "DORMQR", " ", n, n, n, &c_n1, (ftnlen)6, ( ftnlen)1); nb3 = ilaenv_(&c__1, "DORGQR", " ", n, n, n, &c_n1, (ftnlen)6, ( ftnlen)1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); /* Computing MAX */ i__1 = *n * 6, i__2 = *n * (nb + 1); lopt = (*n << 1) + max(i__1,i__2); work[1] = (doublereal) lopt; } if (*info != 0) { i__1 = -(*info); xerbla_("DGEGV ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = dlamch_("E") * dlamch_("B"); safmin = dlamch_("S"); safmin += safmin; safmax = 1. / safmin; onepls = eps * 4 + 1.; /* Scale A */ anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]); anrm1 = anrm; anrm2 = 1.; if (anrm < 1.) { if (safmax * anrm < 1.) { anrm1 = safmin; anrm2 = safmax * anrm; } } if (anrm > 0.) { dlascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 10; return 0; } } /* Scale B */ bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]); bnrm1 = bnrm; bnrm2 = 1.; if (bnrm < 1.) { if (safmax * bnrm < 1.) { bnrm1 = safmin; bnrm2 = safmax * bnrm; } } if (bnrm > 0.) { dlascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 10; return 0; } } /* Permute the matrix to make it more nearly triangular Workspace layout: (8*N words -- "work" requires 6*N words) left_permutation, right_permutation, work... */ ileft = 1; iright = *n + 1; iwork = iright + *n; dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[ ileft], &work[iright], &work[iwork], &iinfo); if (iinfo != 0) { *info = *n + 1; goto L120; } /* Reduce B to triangular form, and initialize VL and/or VR Workspace layout: ("work..." must have at least N words) left_permutation, right_permutation, tau, work... */ irows = ihi + 1 - ilo; if (ilv) { icols = *n + 1 - ilo; } else { icols = irows; } itau = iwork; iwork = itau + irows; i__1 = *lwork + 1 - iwork; dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 2; goto L120; } i__1 = *lwork + 1 - iwork; dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, & iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 3; goto L120; } if (ilvl) { dlaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl) ; i__1 = irows - 1; i__2 = irows - 1; dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo + 1 + ilo * vl_dim1], ldvl); i__1 = *lwork + 1 - iwork; dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[ itau], &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 4; goto L120; } } if (ilvr) { dlaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr) ; } /* Reduce to generalized Hessenberg form */ if (ilv) { /* Eigenvectors requested -- work on whole matrix. */ dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo); } else { dgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda, &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[ vr_offset], ldvr, &iinfo); } if (iinfo != 0) { *info = *n + 5; goto L120; } /* Perform QZ algorithm Workspace layout: ("work..." must have at least 1 word) left_permutation, right_permutation, work... */ iwork = itau; if (ilv) { *(unsigned char *)chtemp = 'S'; } else { *(unsigned char *)chtemp = 'E'; } i__1 = *lwork + 1 - iwork; dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { if (iinfo > 0 && iinfo <= *n) { *info = iinfo; } else if (iinfo > *n && iinfo <= *n << 1) { *info = iinfo - *n; } else { *info = *n + 6; } goto L120; } if (ilv) { /* Compute Eigenvectors (DTGEVC requires 6*N words of workspace) */ if (ilvl) { if (ilvr) { *(unsigned char *)chtemp = 'B'; } else { *(unsigned char *)chtemp = 'L'; } } else { *(unsigned char *)chtemp = 'R'; } dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[ iwork], &iinfo); if (iinfo != 0) { *info = *n + 7; goto L120; } /* Undo balancing on VL and VR, rescale */ if (ilvl) { dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, & vl[vl_offset], ldvl, &iinfo); if (iinfo != 0) { *info = *n + 8; goto L120; } i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.) { goto L50; } temp = 0.; if (alphai[jc] == 0.) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1], abs(d__1)); temp = max(d__2,d__3); /* L10: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1], abs(d__1)) + (d__2 = vl[jr + (jc + 1) * vl_dim1], abs(d__2)); temp = max(d__3,d__4); /* L20: */ } } if (temp < safmin) { goto L50; } temp = 1. / temp; if (alphai[jc] == 0.) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl[jr + jc * vl_dim1] *= temp; /* L30: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vl[jr + jc * vl_dim1] *= temp; vl[jr + (jc + 1) * vl_dim1] *= temp; /* L40: */ } } L50: ; } } if (ilvr) { dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, & vr[vr_offset], ldvr, &iinfo); if (iinfo != 0) { *info = *n + 9; goto L120; } i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (alphai[jc] < 0.) { goto L100; } temp = 0.; if (alphai[jc] == 0.) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1], abs(d__1)); temp = max(d__2,d__3); /* L60: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1], abs(d__1)) + (d__2 = vr[jr + (jc + 1) * vr_dim1], abs(d__2)); temp = max(d__3,d__4); /* L70: */ } } if (temp < safmin) { goto L100; } temp = 1. / temp; if (alphai[jc] == 0.) { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr[jr + jc * vr_dim1] *= temp; /* L80: */ } } else { i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { vr[jr + jc * vr_dim1] *= temp; vr[jr + (jc + 1) * vr_dim1] *= temp; /* L90: */ } } L100: ; } } /* End of eigenvector calculation */ } /* Undo scaling in alpha, beta Note: this does not give the alpha and beta for the unscaled problem. Un-scaling is limited to avoid underflow in alpha and beta if they are significant. */ i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { absar = (d__1 = alphar[jc], abs(d__1)); absai = (d__1 = alphai[jc], abs(d__1)); absb = (d__1 = beta[jc], abs(d__1)); salfar = anrm * alphar[jc]; salfai = anrm * alphai[jc]; sbeta = bnrm * beta[jc]; ilimit = FALSE_; scale = 1.; /* Check for significant underflow in ALPHAI Computing MAX */ d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps * absb; if (abs(salfai) < safmin && absai >= max(d__1,d__2)) { ilimit = TRUE_; /* Computing MAX */ d__1 = onepls * safmin, d__2 = anrm2 * absai; scale = onepls * safmin / anrm1 / max(d__1,d__2); } else if (salfai == 0.) { /* If insignificant underflow in ALPHAI, then make the conjugate eigenvalue real. */ if (alphai[jc] < 0. && jc > 1) { alphai[jc - 1] = 0.; } else if (alphai[jc] > 0. && jc < *n) { alphai[jc + 1] = 0.; } } /* Check for significant underflow in ALPHAR Computing MAX */ d__1 = safmin, d__2 = eps * absai, d__1 = max(d__1,d__2), d__2 = eps * absb; if (abs(salfar) < safmin && absar >= max(d__1,d__2)) { ilimit = TRUE_; /* Computing MAX Computing MAX */ d__3 = onepls * safmin, d__4 = anrm2 * absar; d__1 = scale, d__2 = onepls * safmin / anrm1 / max(d__3,d__4); scale = max(d__1,d__2); } /* Check for significant underflow in BETA Computing MAX */ d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps * absai; if (abs(sbeta) < safmin && absb >= max(d__1,d__2)) { ilimit = TRUE_; /* Computing MAX Computing MAX */ d__3 = onepls * safmin, d__4 = bnrm2 * absb; d__1 = scale, d__2 = onepls * safmin / bnrm1 / max(d__3,d__4); scale = max(d__1,d__2); } /* Check for possible overflow when limiting scaling */ if (ilimit) { /* Computing MAX */ d__1 = abs(salfar), d__2 = abs(salfai), d__1 = max(d__1,d__2), d__2 = abs(sbeta); temp = scale * safmin * max(d__1,d__2); if (temp > 1.) { scale /= temp; } if (scale < 1.) { ilimit = FALSE_; } } /* Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */ if (ilimit) { salfar = scale * alphar[jc] * anrm; salfai = scale * alphai[jc] * anrm; sbeta = scale * beta[jc] * bnrm; } alphar[jc] = salfar; alphai[jc] = salfai; beta[jc] = sbeta; /* L110: */ } L120: work[1] = (doublereal) lwkopt; return 0; /* End of DGEGV */ } /* dgegv_ */