#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int cungbr_(char *vect, integer *m, integer *n, integer *k, complex *a, integer *lda, complex *tau, complex *work, integer *lwork, integer *info) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CUNGBR generates one of the complex unitary matrices Q or P**H determined by CGEBRD when reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q and P**H are defined as products of elementary reflectors H(i) or G(i) respectively. If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q is of order M: if m >= k, Q = H(1) H(2) . . . H(k) and CUNGBR returns the first n columns of Q, where m >= n >= k; if m < k, Q = H(1) H(2) . . . H(m-1) and CUNGBR returns Q as an M-by-M matrix. If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H is of order N: if k < n, P**H = G(k) . . . G(2) G(1) and CUNGBR returns the first m rows of P**H, where n >= m >= k; if k >= n, P**H = G(n-1) . . . G(2) G(1) and CUNGBR returns P**H as an N-by-N matrix. Arguments ========= VECT (input) CHARACTER*1 Specifies whether the matrix Q or the matrix P**H is required, as defined in the transformation applied by CGEBRD: = 'Q': generate Q; = 'P': generate P**H. M (input) INTEGER The number of rows of the matrix Q or P**H to be returned. M >= 0. N (input) INTEGER The number of columns of the matrix Q or P**H to be returned. N >= 0. If VECT = 'Q', M >= N >= min(M,K); if VECT = 'P', N >= M >= min(N,K). K (input) INTEGER If VECT = 'Q', the number of columns in the original M-by-K matrix reduced by CGEBRD. If VECT = 'P', the number of rows in the original K-by-N matrix reduced by CGEBRD. K >= 0. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by CGEBRD. On exit, the M-by-N matrix Q or P**H. LDA (input) INTEGER The leading dimension of the array A. LDA >= M. TAU (input) COMPLEX array, dimension (min(M,K)) if VECT = 'Q' (min(N,K)) if VECT = 'P' TAU(i) must contain the scalar factor of the elementary reflector H(i) or G(i), which determines Q or P**H, as returned by CGEBRD in its array argument TAUQ or TAUP. WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,min(M,N)). For optimum performance LWORK >= min(M,N)*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Test the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ static integer i__, j, nb, mn; extern logical lsame_(char *, char *); static integer iinfo; static logical wantq; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int cunglq_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); static integer lwkopt; static logical lquery; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; wantq = lsame_(vect, "Q"); mn = min(*m,*n); lquery = *lwork == -1; if (! wantq && ! lsame_(vect, "P")) { *info = -1; } else if (*m < 0) { *info = -2; } else if (*n < 0 || wantq && (*n > *m || *n < min(*m,*k)) || ! wantq && ( *m > *n || *m < min(*n,*k))) { *info = -3; } else if (*k < 0) { *info = -4; } else if (*lda < max(1,*m)) { *info = -6; } else if (*lwork < max(1,mn) && ! lquery) { *info = -9; } if (*info == 0) { if (wantq) { nb = ilaenv_(&c__1, "CUNGQR", " ", m, n, k, &c_n1, (ftnlen)6, ( ftnlen)1); } else { nb = ilaenv_(&c__1, "CUNGLQ", " ", m, n, k, &c_n1, (ftnlen)6, ( ftnlen)1); } lwkopt = max(1,mn) * nb; work[1].r = (real) lwkopt, work[1].i = 0.f; } if (*info != 0) { i__1 = -(*info); xerbla_("CUNGBR", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { work[1].r = 1.f, work[1].i = 0.f; return 0; } if (wantq) { /* Form Q, determined by a call to CGEBRD to reduce an m-by-k matrix */ if (*m >= *k) { /* If m >= k, assume m >= n >= k */ cungqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & iinfo); } else { /* If m < k, assume m = n Shift the vectors which define the elementary reflectors one column to the right, and set the first row and column of Q to those of the unit matrix */ for (j = *m; j >= 2; --j) { i__1 = j * a_dim1 + 1; a[i__1].r = 0.f, a[i__1].i = 0.f; i__1 = *m; for (i__ = j + 1; i__ <= i__1; ++i__) { i__2 = i__ + j * a_dim1; i__3 = i__ + (j - 1) * a_dim1; a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i; /* L10: */ } /* L20: */ } i__1 = a_dim1 + 1; a[i__1].r = 1.f, a[i__1].i = 0.f; i__1 = *m; for (i__ = 2; i__ <= i__1; ++i__) { i__2 = i__ + a_dim1; a[i__2].r = 0.f, a[i__2].i = 0.f; /* L30: */ } if (*m > 1) { /* Form Q(2:m,2:m) */ i__1 = *m - 1; i__2 = *m - 1; i__3 = *m - 1; cungqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ 1], &work[1], lwork, &iinfo); } } } else { /* Form P', determined by a call to CGEBRD to reduce a k-by-n matrix */ if (*k < *n) { /* If k < n, assume k <= m <= n */ cunglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & iinfo); } else { /* If k >= n, assume m = n Shift the vectors which define the elementary reflectors one row downward, and set the first row and column of P' to those of the unit matrix */ i__1 = a_dim1 + 1; a[i__1].r = 1.f, a[i__1].i = 0.f; i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { i__2 = i__ + a_dim1; a[i__2].r = 0.f, a[i__2].i = 0.f; /* L40: */ } i__1 = *n; for (j = 2; j <= i__1; ++j) { for (i__ = j - 1; i__ >= 2; --i__) { i__2 = i__ + j * a_dim1; i__3 = i__ - 1 + j * a_dim1; a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i; /* L50: */ } i__2 = j * a_dim1 + 1; a[i__2].r = 0.f, a[i__2].i = 0.f; /* L60: */ } if (*n > 1) { /* Form P'(2:n,2:n) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; cunglq_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ 1], &work[1], lwork, &iinfo); } } } work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CUNGBR */ } /* cungbr_ */