#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int cung2r_(integer *m, integer *n, integer *k, complex *a, integer *lda, complex *tau, complex *work, integer *info) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CUNG2R generates an m by n complex matrix Q with orthonormal columns, which is defined as the first n columns of a product of k elementary reflectors of order m Q = H(1) H(2) . . . H(k) as returned by CGEQRF. Arguments ========= M (input) INTEGER The number of rows of the matrix Q. M >= 0. N (input) INTEGER The number of columns of the matrix Q. M >= N >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. N >= K >= 0. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGEQRF in the first k columns of its array argument A. On exit, the m by n matrix Q. LDA (input) INTEGER The first dimension of the array A. LDA >= max(1,M). TAU (input) COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGEQRF. WORK (workspace) COMPLEX array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value ===================================================================== Test the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; complex q__1; /* Local variables */ static integer i__, j, l; extern /* Subroutine */ int cscal_(integer *, complex *, complex *, integer *), clarf_(char *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *), xerbla_(char *, integer *); a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0 || *n > *m) { *info = -2; } else if (*k < 0 || *k > *n) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("CUNG2R", &i__1); return 0; } /* Quick return if possible */ if (*n <= 0) { return 0; } /* Initialise columns k+1:n to columns of the unit matrix */ i__1 = *n; for (j = *k + 1; j <= i__1; ++j) { i__2 = *m; for (l = 1; l <= i__2; ++l) { i__3 = l + j * a_dim1; a[i__3].r = 0.f, a[i__3].i = 0.f; /* L10: */ } i__2 = j + j * a_dim1; a[i__2].r = 1.f, a[i__2].i = 0.f; /* L20: */ } for (i__ = *k; i__ >= 1; --i__) { /* Apply H(i) to A(i:m,i:n) from the left */ if (i__ < *n) { i__1 = i__ + i__ * a_dim1; a[i__1].r = 1.f, a[i__1].i = 0.f; i__1 = *m - i__ + 1; i__2 = *n - i__; clarf_("Left", &i__1, &i__2, &a[i__ + i__ * a_dim1], &c__1, &tau[ i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]); } if (i__ < *m) { i__1 = *m - i__; i__2 = i__; q__1.r = -tau[i__2].r, q__1.i = -tau[i__2].i; cscal_(&i__1, &q__1, &a[i__ + 1 + i__ * a_dim1], &c__1); } i__1 = i__ + i__ * a_dim1; i__2 = i__; q__1.r = 1.f - tau[i__2].r, q__1.i = 0.f - tau[i__2].i; a[i__1].r = q__1.r, a[i__1].i = q__1.i; /* Set A(1:i-1,i) to zero */ i__1 = i__ - 1; for (l = 1; l <= i__1; ++l) { i__2 = l + i__ * a_dim1; a[i__2].r = 0.f, a[i__2].i = 0.f; /* L30: */ } /* L40: */ } return 0; /* End of CUNG2R */ } /* cung2r_ */