#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int ctrsyl_(char *trana, char *tranb, integer *isgn, integer *m, integer *n, complex *a, integer *lda, complex *b, integer *ldb, complex *c__, integer *ldc, real *scale, integer *info ) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CTRSYL solves the complex Sylvester matrix equation: op(A)*X + X*op(B) = scale*C or op(A)*X - X*op(B) = scale*C, where op(A) = A or A**H, and A and B are both upper triangular. A is M-by-M and B is N-by-N; the right hand side C and the solution X are M-by-N; and scale is an output scale factor, set <= 1 to avoid overflow in X. Arguments ========= TRANA (input) CHARACTER*1 Specifies the option op(A): = 'N': op(A) = A (No transpose) = 'C': op(A) = A**H (Conjugate transpose) TRANB (input) CHARACTER*1 Specifies the option op(B): = 'N': op(B) = B (No transpose) = 'C': op(B) = B**H (Conjugate transpose) ISGN (input) INTEGER Specifies the sign in the equation: = +1: solve op(A)*X + X*op(B) = scale*C = -1: solve op(A)*X - X*op(B) = scale*C M (input) INTEGER The order of the matrix A, and the number of rows in the matrices X and C. M >= 0. N (input) INTEGER The order of the matrix B, and the number of columns in the matrices X and C. N >= 0. A (input) COMPLEX array, dimension (LDA,M) The upper triangular matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). B (input) COMPLEX array, dimension (LDB,N) The upper triangular matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). C (input/output) COMPLEX array, dimension (LDC,N) On entry, the M-by-N right hand side matrix C. On exit, C is overwritten by the solution matrix X. LDC (input) INTEGER The leading dimension of the array C. LDC >= max(1,M) SCALE (output) REAL The scale factor, scale, set <= 1 to avoid overflow in X. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value = 1: A and B have common or very close eigenvalues; perturbed values were used to solve the equation (but the matrices A and B are unchanged). ===================================================================== Decode and Test input parameters Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4; real r__1, r__2; complex q__1, q__2, q__3, q__4; /* Builtin functions */ double r_imag(complex *); void r_cnjg(complex *, complex *); /* Local variables */ static integer j, k, l; static complex a11; static real db; static complex x11; static real da11; static complex vec; static real dum[1], eps, sgn, smin; static complex suml, sumr; extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer *, complex *, integer *); extern logical lsame_(char *, char *); extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer *, complex *, integer *); extern /* Subroutine */ int slabad_(real *, real *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Complex */ VOID cladiv_(complex *, complex *, complex *); static real scaloc; extern doublereal slamch_(char *); extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer *), xerbla_(char *, integer *); static real bignum; static logical notrna, notrnb; static real smlnum; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; /* Function Body */ notrna = lsame_(trana, "N"); notrnb = lsame_(tranb, "N"); *info = 0; if (! notrna && ! lsame_(trana, "C")) { *info = -1; } else if (! notrnb && ! lsame_(tranb, "C")) { *info = -2; } else if (*isgn != 1 && *isgn != -1) { *info = -3; } else if (*m < 0) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*m)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -9; } else if (*ldc < max(1,*m)) { *info = -11; } if (*info != 0) { i__1 = -(*info); xerbla_("CTRSYL", &i__1); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } /* Set constants to control overflow */ eps = slamch_("P"); smlnum = slamch_("S"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); smlnum = smlnum * (real) (*m * *n) / eps; bignum = 1.f / smlnum; /* Computing MAX */ r__1 = smlnum, r__2 = eps * clange_("M", m, m, &a[a_offset], lda, dum), r__1 = max(r__1,r__2), r__2 = eps * clange_("M", n, n, &b[b_offset], ldb, dum); smin = dmax(r__1,r__2); *scale = 1.f; sgn = (real) (*isgn); if (notrna && notrnb) { /* Solve A*X + ISGN*X*B = scale*C. The (K,L)th block of X is determined starting from bottom-left corner column by column by A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) Where M L-1 R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]. I=K+1 J=1 */ i__1 = *n; for (l = 1; l <= i__1; ++l) { for (k = *m; k >= 1; --k) { i__2 = *m - k; /* Computing MIN */ i__3 = k + 1; /* Computing MIN */ i__4 = k + 1; cdotu_(&q__1, &i__2, &a[k + min(i__3, *m)* a_dim1], lda, &c__[ min(i__4, *m)+ l * c_dim1], &c__1); suml.r = q__1.r, suml.i = q__1.i; i__2 = l - 1; cdotu_(&q__1, &i__2, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1] , &c__1); sumr.r = q__1.r, sumr.i = q__1.i; i__2 = k + l * c_dim1; q__3.r = sgn * sumr.r, q__3.i = sgn * sumr.i; q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i; q__1.r = c__[i__2].r - q__2.r, q__1.i = c__[i__2].i - q__2.i; vec.r = q__1.r, vec.i = q__1.i; scaloc = 1.f; i__2 = k + k * a_dim1; i__3 = l + l * b_dim1; q__2.r = sgn * b[i__3].r, q__2.i = sgn * b[i__3].i; q__1.r = a[i__2].r + q__2.r, q__1.i = a[i__2].i + q__2.i; a11.r = q__1.r, a11.i = q__1.i; da11 = (r__1 = a11.r, dabs(r__1)) + (r__2 = r_imag(&a11), dabs(r__2)); if (da11 <= smin) { a11.r = smin, a11.i = 0.f; da11 = smin; *info = 1; } db = (r__1 = vec.r, dabs(r__1)) + (r__2 = r_imag(&vec), dabs( r__2)); if (da11 < 1.f && db > 1.f) { if (db > bignum * da11) { scaloc = 1.f / db; } } q__3.r = scaloc, q__3.i = 0.f; q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r * q__3.i + vec.i * q__3.r; cladiv_(&q__1, &q__2, &a11); x11.r = q__1.r, x11.i = q__1.i; if (scaloc != 1.f) { i__2 = *n; for (j = 1; j <= i__2; ++j) { csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1); /* L10: */ } *scale *= scaloc; } i__2 = k + l * c_dim1; c__[i__2].r = x11.r, c__[i__2].i = x11.i; /* L20: */ } /* L30: */ } } else if (! notrna && notrnb) { /* Solve A' *X + ISGN*X*B = scale*C. The (K,L)th block of X is determined starting from upper-left corner column by column by A'(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) Where K-1 L-1 R(K,L) = SUM [A'(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)] I=1 J=1 */ i__1 = *n; for (l = 1; l <= i__1; ++l) { i__2 = *m; for (k = 1; k <= i__2; ++k) { i__3 = k - 1; cdotc_(&q__1, &i__3, &a[k * a_dim1 + 1], &c__1, &c__[l * c_dim1 + 1], &c__1); suml.r = q__1.r, suml.i = q__1.i; i__3 = l - 1; cdotu_(&q__1, &i__3, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1] , &c__1); sumr.r = q__1.r, sumr.i = q__1.i; i__3 = k + l * c_dim1; q__3.r = sgn * sumr.r, q__3.i = sgn * sumr.i; q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i; q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i; vec.r = q__1.r, vec.i = q__1.i; scaloc = 1.f; r_cnjg(&q__2, &a[k + k * a_dim1]); i__3 = l + l * b_dim1; q__3.r = sgn * b[i__3].r, q__3.i = sgn * b[i__3].i; q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; a11.r = q__1.r, a11.i = q__1.i; da11 = (r__1 = a11.r, dabs(r__1)) + (r__2 = r_imag(&a11), dabs(r__2)); if (da11 <= smin) { a11.r = smin, a11.i = 0.f; da11 = smin; *info = 1; } db = (r__1 = vec.r, dabs(r__1)) + (r__2 = r_imag(&vec), dabs( r__2)); if (da11 < 1.f && db > 1.f) { if (db > bignum * da11) { scaloc = 1.f / db; } } q__3.r = scaloc, q__3.i = 0.f; q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r * q__3.i + vec.i * q__3.r; cladiv_(&q__1, &q__2, &a11); x11.r = q__1.r, x11.i = q__1.i; if (scaloc != 1.f) { i__3 = *n; for (j = 1; j <= i__3; ++j) { csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1); /* L40: */ } *scale *= scaloc; } i__3 = k + l * c_dim1; c__[i__3].r = x11.r, c__[i__3].i = x11.i; /* L50: */ } /* L60: */ } } else if (! notrna && ! notrnb) { /* Solve A'*X + ISGN*X*B' = C. The (K,L)th block of X is determined starting from upper-right corner column by column by A'(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L) Where K-1 R(K,L) = SUM [A'(I,K)*X(I,L)] + I=1 N ISGN*SUM [X(K,J)*B'(L,J)]. J=L+1 */ for (l = *n; l >= 1; --l) { i__1 = *m; for (k = 1; k <= i__1; ++k) { i__2 = k - 1; cdotc_(&q__1, &i__2, &a[k * a_dim1 + 1], &c__1, &c__[l * c_dim1 + 1], &c__1); suml.r = q__1.r, suml.i = q__1.i; i__2 = *n - l; /* Computing MIN */ i__3 = l + 1; /* Computing MIN */ i__4 = l + 1; cdotc_(&q__1, &i__2, &c__[k + min(i__3, *n)* c_dim1], ldc, &b[ l + min(i__4, *n)* b_dim1], ldb); sumr.r = q__1.r, sumr.i = q__1.i; i__2 = k + l * c_dim1; r_cnjg(&q__4, &sumr); q__3.r = sgn * q__4.r, q__3.i = sgn * q__4.i; q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i; q__1.r = c__[i__2].r - q__2.r, q__1.i = c__[i__2].i - q__2.i; vec.r = q__1.r, vec.i = q__1.i; scaloc = 1.f; i__2 = k + k * a_dim1; i__3 = l + l * b_dim1; q__3.r = sgn * b[i__3].r, q__3.i = sgn * b[i__3].i; q__2.r = a[i__2].r + q__3.r, q__2.i = a[i__2].i + q__3.i; r_cnjg(&q__1, &q__2); a11.r = q__1.r, a11.i = q__1.i; da11 = (r__1 = a11.r, dabs(r__1)) + (r__2 = r_imag(&a11), dabs(r__2)); if (da11 <= smin) { a11.r = smin, a11.i = 0.f; da11 = smin; *info = 1; } db = (r__1 = vec.r, dabs(r__1)) + (r__2 = r_imag(&vec), dabs( r__2)); if (da11 < 1.f && db > 1.f) { if (db > bignum * da11) { scaloc = 1.f / db; } } q__3.r = scaloc, q__3.i = 0.f; q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r * q__3.i + vec.i * q__3.r; cladiv_(&q__1, &q__2, &a11); x11.r = q__1.r, x11.i = q__1.i; if (scaloc != 1.f) { i__2 = *n; for (j = 1; j <= i__2; ++j) { csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1); /* L70: */ } *scale *= scaloc; } i__2 = k + l * c_dim1; c__[i__2].r = x11.r, c__[i__2].i = x11.i; /* L80: */ } /* L90: */ } } else if (notrna && ! notrnb) { /* Solve A*X + ISGN*X*B' = C. The (K,L)th block of X is determined starting from bottom-left corner column by column by A(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L) Where M N R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B'(L,J)] I=K+1 J=L+1 */ for (l = *n; l >= 1; --l) { for (k = *m; k >= 1; --k) { i__1 = *m - k; /* Computing MIN */ i__2 = k + 1; /* Computing MIN */ i__3 = k + 1; cdotu_(&q__1, &i__1, &a[k + min(i__2, *m)* a_dim1], lda, &c__[ min(i__3, *m)+ l * c_dim1], &c__1); suml.r = q__1.r, suml.i = q__1.i; i__1 = *n - l; /* Computing MIN */ i__2 = l + 1; /* Computing MIN */ i__3 = l + 1; cdotc_(&q__1, &i__1, &c__[k + min(i__2, *n)* c_dim1], ldc, &b[ l + min(i__3, *n)* b_dim1], ldb); sumr.r = q__1.r, sumr.i = q__1.i; i__1 = k + l * c_dim1; r_cnjg(&q__4, &sumr); q__3.r = sgn * q__4.r, q__3.i = sgn * q__4.i; q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i; q__1.r = c__[i__1].r - q__2.r, q__1.i = c__[i__1].i - q__2.i; vec.r = q__1.r, vec.i = q__1.i; scaloc = 1.f; i__1 = k + k * a_dim1; r_cnjg(&q__3, &b[l + l * b_dim1]); q__2.r = sgn * q__3.r, q__2.i = sgn * q__3.i; q__1.r = a[i__1].r + q__2.r, q__1.i = a[i__1].i + q__2.i; a11.r = q__1.r, a11.i = q__1.i; da11 = (r__1 = a11.r, dabs(r__1)) + (r__2 = r_imag(&a11), dabs(r__2)); if (da11 <= smin) { a11.r = smin, a11.i = 0.f; da11 = smin; *info = 1; } db = (r__1 = vec.r, dabs(r__1)) + (r__2 = r_imag(&vec), dabs( r__2)); if (da11 < 1.f && db > 1.f) { if (db > bignum * da11) { scaloc = 1.f / db; } } q__3.r = scaloc, q__3.i = 0.f; q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r * q__3.i + vec.i * q__3.r; cladiv_(&q__1, &q__2, &a11); x11.r = q__1.r, x11.i = q__1.i; if (scaloc != 1.f) { i__1 = *n; for (j = 1; j <= i__1; ++j) { csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1); /* L100: */ } *scale *= scaloc; } i__1 = k + l * c_dim1; c__[i__1].r = x11.r, c__[i__1].i = x11.i; /* L110: */ } /* L120: */ } } return 0; /* End of CTRSYL */ } /* ctrsyl_ */