#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int clatdf_(integer *ijob, integer *n, complex *z__, integer *ldz, complex *rhs, real *rdsum, real *rdscal, integer *ipiv, integer *jpiv) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CLATDF computes the contribution to the reciprocal Dif-estimate by solving for x in Z * x = b, where b is chosen such that the norm of x is as large as possible. It is assumed that LU decomposition of Z has been computed by CGETC2. On entry RHS = f holds the contribution from earlier solved sub-systems, and on return RHS = x. The factorization of Z returned by CGETC2 has the form Z = P * L * U * Q, where P and Q are permutation matrices. L is lower triangular with unit diagonal elements and U is upper triangular. Arguments ========= IJOB (input) INTEGER IJOB = 2: First compute an approximative null-vector e of Z using CGECON, e is normalized and solve for Zx = +-e - f with the sign giving the greater value of 2-norm(x). About 5 times as expensive as Default. IJOB .ne. 2: Local look ahead strategy where all entries of the r.h.s. b is choosen as either +1 or -1. Default. N (input) INTEGER The number of columns of the matrix Z. Z (input) REAL array, dimension (LDZ, N) On entry, the LU part of the factorization of the n-by-n matrix Z computed by CGETC2: Z = P * L * U * Q LDZ (input) INTEGER The leading dimension of the array Z. LDA >= max(1, N). RHS (input/output) REAL array, dimension (N). On entry, RHS contains contributions from other subsystems. On exit, RHS contains the solution of the subsystem with entries according to the value of IJOB (see above). RDSUM (input/output) REAL On entry, the sum of squares of computed contributions to the Dif-estimate under computation by CTGSYL, where the scaling factor RDSCAL (see below) has been factored out. On exit, the corresponding sum of squares updated with the contributions from the current sub-system. If TRANS = 'T' RDSUM is not touched. NOTE: RDSUM only makes sense when CTGSY2 is called by CTGSYL. RDSCAL (input/output) REAL On entry, scaling factor used to prevent overflow in RDSUM. On exit, RDSCAL is updated w.r.t. the current contributions in RDSUM. If TRANS = 'T', RDSCAL is not touched. NOTE: RDSCAL only makes sense when CTGSY2 is called by CTGSYL. IPIV (input) INTEGER array, dimension (N). The pivot indices; for 1 <= i <= N, row i of the matrix has been interchanged with row IPIV(i). JPIV (input) INTEGER array, dimension (N). The pivot indices; for 1 <= j <= N, column j of the matrix has been interchanged with column JPIV(j). Further Details =============== Based on contributions by Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden. This routine is a further developed implementation of algorithm BSOLVE in [1] using complete pivoting in the LU factorization. [1] Bo Kagstrom and Lars Westin, Generalized Schur Methods with Condition Estimators for Solving the Generalized Sylvester Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. [2] Peter Poromaa, On Efficient and Robust Estimators for the Separation between two Regular Matrix Pairs with Applications in Condition Estimation. Report UMINF-95.05, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1995. ===================================================================== Parameter adjustments */ /* Table of constant values */ static complex c_b1 = {1.f,0.f}; static integer c__1 = 1; static integer c_n1 = -1; static real c_b24 = 1.f; /* System generated locals */ integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5; complex q__1, q__2, q__3; /* Builtin functions */ void c_div(complex *, complex *, complex *); double c_abs(complex *); void c_sqrt(complex *, complex *); /* Local variables */ static integer i__, j, k; static complex bm, bp, xm[2], xp[2]; static integer info; static complex temp, work[8]; extern /* Subroutine */ int cscal_(integer *, complex *, complex *, integer *); static real scale; extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer *, complex *, integer *); extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *); static complex pmone; extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, integer *, complex *, integer *); static real rtemp, sminu, rwork[2], splus; extern /* Subroutine */ int cgesc2_(integer *, complex *, integer *, complex *, integer *, integer *, real *), cgecon_(char *, integer *, complex *, integer *, real *, real *, complex *, real *, integer *), classq_(integer *, complex *, integer *, real *, real *), claswp_(integer *, complex *, integer *, integer *, integer *, integer *, integer *); extern doublereal scasum_(integer *, complex *, integer *); z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --rhs; --ipiv; --jpiv; /* Function Body */ if (*ijob != 2) { /* Apply permutations IPIV to RHS */ i__1 = *n - 1; claswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1); /* Solve for L-part choosing RHS either to +1 or -1. */ q__1.r = -1.f, q__1.i = -0.f; pmone.r = q__1.r, pmone.i = q__1.i; i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = j; q__1.r = rhs[i__2].r + 1.f, q__1.i = rhs[i__2].i + 0.f; bp.r = q__1.r, bp.i = q__1.i; i__2 = j; q__1.r = rhs[i__2].r - 1.f, q__1.i = rhs[i__2].i - 0.f; bm.r = q__1.r, bm.i = q__1.i; splus = 1.f; /* Lockahead for L- part RHS(1:N-1) = +-1 SPLUS and SMIN computed more efficiently than in BSOLVE[1]. */ i__2 = *n - j; cdotc_(&q__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1 + j * z_dim1], &c__1); splus += q__1.r; i__2 = *n - j; cdotc_(&q__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], &c__1); sminu = q__1.r; i__2 = j; splus *= rhs[i__2].r; if (splus > sminu) { i__2 = j; rhs[i__2].r = bp.r, rhs[i__2].i = bp.i; } else if (sminu > splus) { i__2 = j; rhs[i__2].r = bm.r, rhs[i__2].i = bm.i; } else { /* In this case the updating sums are equal and we can choose RHS(J) +1 or -1. The first time this happens we choose -1, thereafter +1. This is a simple way to get good estimates of matrices like Byers well-known example (see [1]). (Not done in BSOLVE.) */ i__2 = j; i__3 = j; q__1.r = rhs[i__3].r + pmone.r, q__1.i = rhs[i__3].i + pmone.i; rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i; pmone.r = 1.f, pmone.i = 0.f; } /* Compute the remaining r.h.s. */ i__2 = j; q__1.r = -rhs[i__2].r, q__1.i = -rhs[i__2].i; temp.r = q__1.r, temp.i = q__1.i; i__2 = *n - j; caxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], &c__1); /* L10: */ } /* Solve for U- part, lockahead for RHS(N) = +-1. This is not done In BSOLVE and will hopefully give us a better estimate because any ill-conditioning of the original matrix is transfered to U and not to L. U(N, N) is an approximation to sigma_min(LU). */ i__1 = *n - 1; ccopy_(&i__1, &rhs[1], &c__1, work, &c__1); i__1 = *n - 1; i__2 = *n; q__1.r = rhs[i__2].r + 1.f, q__1.i = rhs[i__2].i + 0.f; work[i__1].r = q__1.r, work[i__1].i = q__1.i; i__1 = *n; i__2 = *n; q__1.r = rhs[i__2].r - 1.f, q__1.i = rhs[i__2].i - 0.f; rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i; splus = 0.f; sminu = 0.f; for (i__ = *n; i__ >= 1; --i__) { c_div(&q__1, &c_b1, &z__[i__ + i__ * z_dim1]); temp.r = q__1.r, temp.i = q__1.i; i__1 = i__ - 1; i__2 = i__ - 1; q__1.r = work[i__2].r * temp.r - work[i__2].i * temp.i, q__1.i = work[i__2].r * temp.i + work[i__2].i * temp.r; work[i__1].r = q__1.r, work[i__1].i = q__1.i; i__1 = i__; i__2 = i__; q__1.r = rhs[i__2].r * temp.r - rhs[i__2].i * temp.i, q__1.i = rhs[i__2].r * temp.i + rhs[i__2].i * temp.r; rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i; i__1 = *n; for (k = i__ + 1; k <= i__1; ++k) { i__2 = i__ - 1; i__3 = i__ - 1; i__4 = k - 1; i__5 = i__ + k * z_dim1; q__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, q__3.i = z__[i__5].r * temp.i + z__[i__5].i * temp.r; q__2.r = work[i__4].r * q__3.r - work[i__4].i * q__3.i, q__2.i = work[i__4].r * q__3.i + work[i__4].i * q__3.r; q__1.r = work[i__3].r - q__2.r, q__1.i = work[i__3].i - q__2.i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; i__2 = i__; i__3 = i__; i__4 = k; i__5 = i__ + k * z_dim1; q__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, q__3.i = z__[i__5].r * temp.i + z__[i__5].i * temp.r; q__2.r = rhs[i__4].r * q__3.r - rhs[i__4].i * q__3.i, q__2.i = rhs[i__4].r * q__3.i + rhs[i__4].i * q__3.r; q__1.r = rhs[i__3].r - q__2.r, q__1.i = rhs[i__3].i - q__2.i; rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i; /* L20: */ } splus += c_abs(&work[i__ - 1]); sminu += c_abs(&rhs[i__]); /* L30: */ } if (splus > sminu) { ccopy_(n, work, &c__1, &rhs[1], &c__1); } /* Apply the permutations JPIV to the computed solution (RHS) */ i__1 = *n - 1; claswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1); /* Compute the sum of squares */ classq_(n, &rhs[1], &c__1, rdscal, rdsum); return 0; } /* ENTRY IJOB = 2 Compute approximate nullvector XM of Z */ cgecon_("I", n, &z__[z_offset], ldz, &c_b24, &rtemp, work, rwork, &info); ccopy_(n, &work[*n], &c__1, xm, &c__1); /* Compute RHS */ i__1 = *n - 1; claswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1); cdotc_(&q__3, n, xm, &c__1, xm, &c__1); c_sqrt(&q__2, &q__3); c_div(&q__1, &c_b1, &q__2); temp.r = q__1.r, temp.i = q__1.i; cscal_(n, &temp, xm, &c__1); ccopy_(n, xm, &c__1, xp, &c__1); caxpy_(n, &c_b1, &rhs[1], &c__1, xp, &c__1); q__1.r = -1.f, q__1.i = -0.f; caxpy_(n, &q__1, xm, &c__1, &rhs[1], &c__1); cgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &scale); cgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &scale); if (scasum_(n, xp, &c__1) > scasum_(n, &rhs[1], &c__1)) { ccopy_(n, xp, &c__1, &rhs[1], &c__1); } /* Compute the sum of squares */ classq_(n, &rhs[1], &c__1, rdscal, rdsum); return 0; /* End of CLATDF */ } /* clatdf_ */