#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int claqgb_(integer *m, integer *n, integer *kl, integer *ku, complex *ab, integer *ldab, real *r__, real *c__, real *rowcnd, real *colcnd, real *amax, char *equed) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CLAQGB equilibrates a general M by N band matrix A with KL subdiagonals and KU superdiagonals using the row and scaling factors in the vectors R and C. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. KL (input) INTEGER The number of subdiagonals within the band of A. KL >= 0. KU (input) INTEGER The number of superdiagonals within the band of A. KU >= 0. AB (input/output) COMPLEX array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) On exit, the equilibrated matrix, in the same storage format as A. See EQUED for the form of the equilibrated matrix. LDAB (input) INTEGER The leading dimension of the array AB. LDA >= KL+KU+1. R (input) REAL array, dimension (M) The row scale factors for A. C (input) REAL array, dimension (N) The column scale factors for A. ROWCND (input) REAL Ratio of the smallest R(i) to the largest R(i). COLCND (input) REAL Ratio of the smallest C(i) to the largest C(i). AMAX (input) REAL Absolute value of largest matrix entry. EQUED (output) CHARACTER*1 Specifies the form of equilibration that was done. = 'N': No equilibration = 'R': Row equilibration, i.e., A has been premultiplied by diag(R). = 'C': Column equilibration, i.e., A has been postmultiplied by diag(C). = 'B': Both row and column equilibration, i.e., A has been replaced by diag(R) * A * diag(C). Internal Parameters =================== THRESH is a threshold value used to decide if row or column scaling should be done based on the ratio of the row or column scaling factors. If ROWCND < THRESH, row scaling is done, and if COLCND < THRESH, column scaling is done. LARGE and SMALL are threshold values used to decide if row scaling should be done based on the absolute size of the largest matrix element. If AMAX > LARGE or AMAX < SMALL, row scaling is done. ===================================================================== Quick return if possible Parameter adjustments */ /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6; real r__1; complex q__1; /* Local variables */ static integer i__, j; static real cj, large, small; extern doublereal slamch_(char *); ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --r__; --c__; /* Function Body */ if (*m <= 0 || *n <= 0) { *(unsigned char *)equed = 'N'; return 0; } /* Initialize LARGE and SMALL. */ small = slamch_("Safe minimum") / slamch_("Precision"); large = 1.f / small; if (*rowcnd >= .1f && *amax >= small && *amax <= large) { /* No row scaling */ if (*colcnd >= .1f) { /* No column scaling */ *(unsigned char *)equed = 'N'; } else { /* Column scaling */ i__1 = *n; for (j = 1; j <= i__1; ++j) { cj = c__[j]; /* Computing MAX */ i__2 = 1, i__3 = j - *ku; /* Computing MIN */ i__5 = *m, i__6 = j + *kl; i__4 = min(i__5,i__6); for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { i__2 = *ku + 1 + i__ - j + j * ab_dim1; i__3 = *ku + 1 + i__ - j + j * ab_dim1; q__1.r = cj * ab[i__3].r, q__1.i = cj * ab[i__3].i; ab[i__2].r = q__1.r, ab[i__2].i = q__1.i; /* L10: */ } /* L20: */ } *(unsigned char *)equed = 'C'; } } else if (*colcnd >= .1f) { /* Row scaling, no column scaling */ i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__4 = 1, i__2 = j - *ku; /* Computing MIN */ i__5 = *m, i__6 = j + *kl; i__3 = min(i__5,i__6); for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { i__4 = *ku + 1 + i__ - j + j * ab_dim1; i__2 = i__; i__5 = *ku + 1 + i__ - j + j * ab_dim1; q__1.r = r__[i__2] * ab[i__5].r, q__1.i = r__[i__2] * ab[i__5] .i; ab[i__4].r = q__1.r, ab[i__4].i = q__1.i; /* L30: */ } /* L40: */ } *(unsigned char *)equed = 'R'; } else { /* Row and column scaling */ i__1 = *n; for (j = 1; j <= i__1; ++j) { cj = c__[j]; /* Computing MAX */ i__3 = 1, i__4 = j - *ku; /* Computing MIN */ i__5 = *m, i__6 = j + *kl; i__2 = min(i__5,i__6); for (i__ = max(i__3,i__4); i__ <= i__2; ++i__) { i__3 = *ku + 1 + i__ - j + j * ab_dim1; r__1 = cj * r__[i__]; i__4 = *ku + 1 + i__ - j + j * ab_dim1; q__1.r = r__1 * ab[i__4].r, q__1.i = r__1 * ab[i__4].i; ab[i__3].r = q__1.r, ab[i__3].i = q__1.i; /* L50: */ } /* L60: */ } *(unsigned char *)equed = 'B'; } return 0; /* End of CLAQGB */ } /* claqgb_ */