#include "blaswrap.h" #include "f2c.h" doublereal clantr_(char *norm, char *uplo, char *diag, integer *m, integer *n, complex *a, integer *lda, real *work ) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CLANTR returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix A. Description =========== CLANTR returns the value CLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. Arguments ========= NORM (input) CHARACTER*1 Specifies the value to be returned in CLANTR as described above. UPLO (input) CHARACTER*1 Specifies whether the matrix A is upper or lower trapezoidal. = 'U': Upper trapezoidal = 'L': Lower trapezoidal Note that A is triangular instead of trapezoidal if M = N. DIAG (input) CHARACTER*1 Specifies whether or not the matrix A has unit diagonal. = 'N': Non-unit diagonal = 'U': Unit diagonal M (input) INTEGER The number of rows of the matrix A. M >= 0, and if UPLO = 'U', M <= N. When M = 0, CLANTR is set to zero. N (input) INTEGER The number of columns of the matrix A. N >= 0, and if UPLO = 'L', N <= M. When N = 0, CLANTR is set to zero. A (input) COMPLEX array, dimension (LDA,N) The trapezoidal matrix A (A is triangular if M = N). If UPLO = 'U', the leading m by n upper trapezoidal part of the array A contains the upper trapezoidal matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading m by n lower trapezoidal part of the array A contains the lower trapezoidal matrix, and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be one. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(M,1). WORK (workspace) REAL array, dimension (MAX(1,LWORK)), where LWORK >= M when NORM = 'I'; otherwise, WORK is not referenced. ===================================================================== Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; real ret_val, r__1, r__2; /* Builtin functions */ double c_abs(complex *), sqrt(doublereal); /* Local variables */ static integer i__, j; static real sum, scale; static logical udiag; extern logical lsame_(char *, char *); static real value; extern /* Subroutine */ int classq_(integer *, complex *, integer *, real *, real *); a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --work; /* Function Body */ if (min(*m,*n) == 0) { value = 0.f; } else if (lsame_(norm, "M")) { /* Find max(abs(A(i,j))). */ if (lsame_(diag, "U")) { value = 1.f; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__3 = *m, i__4 = j - 1; i__2 = min(i__3,i__4); for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ r__1 = value, r__2 = c_abs(&a[i__ + j * a_dim1]); value = dmax(r__1,r__2); /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j + 1; i__ <= i__2; ++i__) { /* Computing MAX */ r__1 = value, r__2 = c_abs(&a[i__ + j * a_dim1]); value = dmax(r__1,r__2); /* L30: */ } /* L40: */ } } } else { value = 0.f; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = min(*m,j); for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ r__1 = value, r__2 = c_abs(&a[i__ + j * a_dim1]); value = dmax(r__1,r__2); /* L50: */ } /* L60: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j; i__ <= i__2; ++i__) { /* Computing MAX */ r__1 = value, r__2 = c_abs(&a[i__ + j * a_dim1]); value = dmax(r__1,r__2); /* L70: */ } /* L80: */ } } } } else if (lsame_(norm, "O") || *(unsigned char *) norm == '1') { /* Find norm1(A). */ value = 0.f; udiag = lsame_(diag, "U"); if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (udiag && j <= *m) { sum = 1.f; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { sum += c_abs(&a[i__ + j * a_dim1]); /* L90: */ } } else { sum = 0.f; i__2 = min(*m,j); for (i__ = 1; i__ <= i__2; ++i__) { sum += c_abs(&a[i__ + j * a_dim1]); /* L100: */ } } value = dmax(value,sum); /* L110: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (udiag) { sum = 1.f; i__2 = *m; for (i__ = j + 1; i__ <= i__2; ++i__) { sum += c_abs(&a[i__ + j * a_dim1]); /* L120: */ } } else { sum = 0.f; i__2 = *m; for (i__ = j; i__ <= i__2; ++i__) { sum += c_abs(&a[i__ + j * a_dim1]); /* L130: */ } } value = dmax(value,sum); /* L140: */ } } } else if (lsame_(norm, "I")) { /* Find normI(A). */ if (lsame_(uplo, "U")) { if (lsame_(diag, "U")) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 1.f; /* L150: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__3 = *m, i__4 = j - 1; i__2 = min(i__3,i__4); for (i__ = 1; i__ <= i__2; ++i__) { work[i__] += c_abs(&a[i__ + j * a_dim1]); /* L160: */ } /* L170: */ } } else { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 0.f; /* L180: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = min(*m,j); for (i__ = 1; i__ <= i__2; ++i__) { work[i__] += c_abs(&a[i__ + j * a_dim1]); /* L190: */ } /* L200: */ } } } else { if (lsame_(diag, "U")) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 1.f; /* L210: */ } i__1 = *m; for (i__ = *n + 1; i__ <= i__1; ++i__) { work[i__] = 0.f; /* L220: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j + 1; i__ <= i__2; ++i__) { work[i__] += c_abs(&a[i__ + j * a_dim1]); /* L230: */ } /* L240: */ } } else { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 0.f; /* L250: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j; i__ <= i__2; ++i__) { work[i__] += c_abs(&a[i__ + j * a_dim1]); /* L260: */ } /* L270: */ } } } value = 0.f; i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ r__1 = value, r__2 = work[i__]; value = dmax(r__1,r__2); /* L280: */ } } else if (lsame_(norm, "F") || lsame_(norm, "E")) { /* Find normF(A). */ if (lsame_(uplo, "U")) { if (lsame_(diag, "U")) { scale = 1.f; sum = (real) min(*m,*n); i__1 = *n; for (j = 2; j <= i__1; ++j) { /* Computing MIN */ i__3 = *m, i__4 = j - 1; i__2 = min(i__3,i__4); classq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum); /* L290: */ } } else { scale = 0.f; sum = 1.f; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = min(*m,j); classq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum); /* L300: */ } } } else { if (lsame_(diag, "U")) { scale = 1.f; sum = (real) min(*m,*n); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m - j; /* Computing MIN */ i__3 = *m, i__4 = j + 1; classq_(&i__2, &a[min(i__3,i__4) + j * a_dim1], &c__1, & scale, &sum); /* L310: */ } } else { scale = 0.f; sum = 1.f; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m - j + 1; classq_(&i__2, &a[j + j * a_dim1], &c__1, &scale, &sum); /* L320: */ } } } value = scale * sqrt(sum); } ret_val = value; return ret_val; /* End of CLANTR */ } /* clantr_ */