#include "blaswrap.h"
#include "f2c.h"

/* Subroutine */ int cgetrf_(integer *m, integer *n, complex *a, integer *lda,
	 integer *ipiv, integer *info)
{
/*  -- LAPACK routine (version 3.1) --   
       Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..   
       November 2006   


    Purpose   
    =======   

    CGETRF computes an LU factorization of a general M-by-N matrix A   
    using partial pivoting with row interchanges.   

    The factorization has the form   
       A = P * L * U   
    where P is a permutation matrix, L is lower triangular with unit   
    diagonal elements (lower trapezoidal if m > n), and U is upper   
    triangular (upper trapezoidal if m < n).   

    This is the right-looking Level 3 BLAS version of the algorithm.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    A       (input/output) COMPLEX array, dimension (LDA,N)   
            On entry, the M-by-N matrix to be factored.   
            On exit, the factors L and U from the factorization   
            A = P*L*U; the unit diagonal elements of L are not stored.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    IPIV    (output) INTEGER array, dimension (min(M,N))   
            The pivot indices; for 1 <= i <= min(M,N), row i of the   
            matrix was interchanged with row IPIV(i).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, U(i,i) is exactly zero. The factorization   
                  has been completed, but the factor U is exactly   
                  singular, and division by zero will occur if it is used   
                  to solve a system of equations.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static complex c_b1 = {1.f,0.f};
    static integer c__1 = 1;
    static integer c_n1 = -1;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
    complex q__1;
    /* Local variables */
    static integer i__, j, jb, nb;
    extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, 
	    integer *, complex *, complex *, integer *, complex *, integer *, 
	    complex *, complex *, integer *);
    static integer iinfo;
    extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *, 
	    integer *, integer *, complex *, complex *, integer *, complex *, 
	    integer *), cgetf2_(integer *, 
	    integer *, complex *, integer *, integer *, integer *), xerbla_(
	    char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int claswp_(integer *, complex *, integer *, 
	    integer *, integer *, integer *, integer *);


    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGETRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	return 0;
    }

/*     Determine the block size for this environment. */

    nb = ilaenv_(&c__1, "CGETRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
    if (nb <= 1 || nb >= min(*m,*n)) {

/*        Use unblocked code. */

	cgetf2_(m, n, &a[a_offset], lda, &ipiv[1], info);
    } else {

/*        Use blocked code. */

	i__1 = min(*m,*n);
	i__2 = nb;
	for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Computing MIN */
	    i__3 = min(*m,*n) - j + 1;
	    jb = min(i__3,nb);

/*           Factor diagonal and subdiagonal blocks and test for exact   
             singularity. */

	    i__3 = *m - j + 1;
	    cgetf2_(&i__3, &jb, &a[j + j * a_dim1], lda, &ipiv[j], &iinfo);

/*           Adjust INFO and the pivot indices. */

	    if (*info == 0 && iinfo > 0) {
		*info = iinfo + j - 1;
	    }
/* Computing MIN */
	    i__4 = *m, i__5 = j + jb - 1;
	    i__3 = min(i__4,i__5);
	    for (i__ = j; i__ <= i__3; ++i__) {
		ipiv[i__] = j - 1 + ipiv[i__];
/* L10: */
	    }

/*           Apply interchanges to columns 1:J-1. */

	    i__3 = j - 1;
	    i__4 = j + jb - 1;
	    claswp_(&i__3, &a[a_offset], lda, &j, &i__4, &ipiv[1], &c__1);

	    if (j + jb <= *n) {

/*              Apply interchanges to columns J+JB:N. */

		i__3 = *n - j - jb + 1;
		i__4 = j + jb - 1;
		claswp_(&i__3, &a[(j + jb) * a_dim1 + 1], lda, &j, &i__4, &
			ipiv[1], &c__1);

/*              Compute block row of U. */

		i__3 = *n - j - jb + 1;
		ctrsm_("Left", "Lower", "No transpose", "Unit", &jb, &i__3, &
			c_b1, &a[j + j * a_dim1], lda, &a[j + (j + jb) * 
			a_dim1], lda);
		if (j + jb <= *m) {

/*                 Update trailing submatrix. */

		    i__3 = *m - j - jb + 1;
		    i__4 = *n - j - jb + 1;
		    q__1.r = -1.f, q__1.i = -0.f;
		    cgemm_("No transpose", "No transpose", &i__3, &i__4, &jb, 
			    &q__1, &a[j + jb + j * a_dim1], lda, &a[j + (j + 
			    jb) * a_dim1], lda, &c_b1, &a[j + jb + (j + jb) * 
			    a_dim1], lda);
		}
	    }
/* L20: */
	}
    }
    return 0;

/*     End of CGETRF */

} /* cgetrf_ */