#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int sgemv_(char *trans, integer *m, integer *n, real *alpha, real *a, integer *lda, real *x, integer *incx, real *beta, real *y, integer *incy) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ static integer i__, j, ix, iy, jx, jy, kx, ky, info; static real temp; static integer lenx, leny; extern logical lsame_(char *, char *); extern /* Subroutine */ int xerbla_(char *, integer *); /* Purpose ======= SGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, where alpha and beta are scalars, x and y are vectors and A is an m by n matrix. Arguments ========== TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A'*x + beta*y. TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. X - REAL array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. BETA - REAL . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. Y - REAL array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry with BETA non-zero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. Test the input parameters. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --x; --y; /* Function Body */ info = 0; if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C") ) { info = 1; } else if (*m < 0) { info = 2; } else if (*n < 0) { info = 3; } else if (*lda < max(1,*m)) { info = 6; } else if (*incx == 0) { info = 8; } else if (*incy == 0) { info = 11; } if (info != 0) { xerbla_("SGEMV ", &info); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || *alpha == 0.f && *beta == 1.f) { return 0; } /* Set LENX and LENY, the lengths of the vectors x and y, and set up the start points in X and Y. */ if (lsame_(trans, "N")) { lenx = *n; leny = *m; } else { lenx = *m; leny = *n; } if (*incx > 0) { kx = 1; } else { kx = 1 - (lenx - 1) * *incx; } if (*incy > 0) { ky = 1; } else { ky = 1 - (leny - 1) * *incy; } /* Start the operations. In this version the elements of A are accessed sequentially with one pass through A. First form y := beta*y. */ if (*beta != 1.f) { if (*incy == 1) { if (*beta == 0.f) { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { y[i__] = 0.f; /* L10: */ } } else { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { y[i__] = *beta * y[i__]; /* L20: */ } } } else { iy = ky; if (*beta == 0.f) { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { y[iy] = 0.f; iy += *incy; /* L30: */ } } else { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { y[iy] = *beta * y[iy]; iy += *incy; /* L40: */ } } } } if (*alpha == 0.f) { return 0; } if (lsame_(trans, "N")) { /* Form y := alpha*A*x + y. */ jx = kx; if (*incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (x[jx] != 0.f) { temp = *alpha * x[jx]; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { y[i__] += temp * a[i__ + j * a_dim1]; /* L50: */ } } jx += *incx; /* L60: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (x[jx] != 0.f) { temp = *alpha * x[jx]; iy = ky; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { y[iy] += temp * a[i__ + j * a_dim1]; iy += *incy; /* L70: */ } } jx += *incx; /* L80: */ } } } else { /* Form y := alpha*A'*x + y. */ jy = ky; if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp = 0.f; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp += a[i__ + j * a_dim1] * x[i__]; /* L90: */ } y[jy] += *alpha * temp; jy += *incy; /* L100: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp = 0.f; ix = kx; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp += a[i__ + j * a_dim1] * x[ix]; ix += *incx; /* L110: */ } y[jy] += *alpha * temp; jy += *incy; /* L120: */ } } } return 0; /* End of SGEMV . */ } /* sgemv_ */