#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int dspr2_(char *uplo, integer *n, doublereal *alpha, doublereal *x, integer *incx, doublereal *y, integer *incy, doublereal *ap) { /* System generated locals */ integer i__1, i__2; /* Local variables */ static integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info; static doublereal temp1, temp2; extern logical lsame_(char *, char *); extern /* Subroutine */ int xerbla_(char *, integer *); /* Purpose ======= DSPR2 performs the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A, where alpha is a scalar, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Y - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. AP - DOUBLE PRECISION array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. Test the input parameters. Parameter adjustments */ --ap; --y; --x; /* Function Body */ info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { info = 1; } else if (*n < 0) { info = 2; } else if (*incx == 0) { info = 5; } else if (*incy == 0) { info = 7; } if (info != 0) { xerbla_("DSPR2 ", &info); return 0; } /* Quick return if possible. */ if (*n == 0 || *alpha == 0.) { return 0; } /* Set up the start points in X and Y if the increments are not both unity. */ if (*incx != 1 || *incy != 1) { if (*incx > 0) { kx = 1; } else { kx = 1 - (*n - 1) * *incx; } if (*incy > 0) { ky = 1; } else { ky = 1 - (*n - 1) * *incy; } jx = kx; jy = ky; } /* Start the operations. In this version the elements of the array AP are accessed sequentially with one pass through AP. */ kk = 1; if (lsame_(uplo, "U")) { /* Form A when upper triangle is stored in AP. */ if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (x[j] != 0. || y[j] != 0.) { temp1 = *alpha * y[j]; temp2 = *alpha * x[j]; k = kk; i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { ap[k] = ap[k] + x[i__] * temp1 + y[i__] * temp2; ++k; /* L10: */ } } kk += j; /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (x[jx] != 0. || y[jy] != 0.) { temp1 = *alpha * y[jy]; temp2 = *alpha * x[jx]; ix = kx; iy = ky; i__2 = kk + j - 1; for (k = kk; k <= i__2; ++k) { ap[k] = ap[k] + x[ix] * temp1 + y[iy] * temp2; ix += *incx; iy += *incy; /* L30: */ } } jx += *incx; jy += *incy; kk += j; /* L40: */ } } } else { /* Form A when lower triangle is stored in AP. */ if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (x[j] != 0. || y[j] != 0.) { temp1 = *alpha * y[j]; temp2 = *alpha * x[j]; k = kk; i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { ap[k] = ap[k] + x[i__] * temp1 + y[i__] * temp2; ++k; /* L50: */ } } kk = kk + *n - j + 1; /* L60: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (x[jx] != 0. || y[jy] != 0.) { temp1 = *alpha * y[jy]; temp2 = *alpha * x[jx]; ix = jx; iy = jy; i__2 = kk + *n - j; for (k = kk; k <= i__2; ++k) { ap[k] = ap[k] + x[ix] * temp1 + y[iy] * temp2; ix += *incx; iy += *incy; /* L70: */ } } jx += *incx; jy += *incy; kk = kk + *n - j + 1; /* L80: */ } } } return 0; /* End of DSPR2 . */ } /* dspr2_ */