#include "blaswrap.h"
#include "f2c.h"

/* Subroutine */ int dgemv_(char *trans, integer *m, integer *n, doublereal *
	alpha, doublereal *a, integer *lda, doublereal *x, integer *incx, 
	doublereal *beta, doublereal *y, integer *incy)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    /* Local variables */
    static integer i__, j, ix, iy, jx, jy, kx, ky, info;
    static doublereal temp;
    static integer lenx, leny;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
/*  Purpose   
    =======   
    DGEMV  performs one of the matrix-vector operations   
       y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,   
    where alpha and beta are scalars, x and y are vectors and A is an   
    m by n matrix.   
    Arguments   
    ==========   
    TRANS  - CHARACTER*1.   
             On entry, TRANS specifies the operation to be performed as   
             follows:   
                TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.   
                TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.   
                TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.   
             Unchanged on exit.   
    M      - INTEGER.   
             On entry, M specifies the number of rows of the matrix A.   
             M must be at least zero.   
             Unchanged on exit.   
    N      - INTEGER.   
             On entry, N specifies the number of columns of the matrix A.   
             N must be at least zero.   
             Unchanged on exit.   
    ALPHA  - DOUBLE PRECISION.   
             On entry, ALPHA specifies the scalar alpha.   
             Unchanged on exit.   
    A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).   
             Before entry, the leading m by n part of the array A must   
             contain the matrix of coefficients.   
             Unchanged on exit.   
    LDA    - INTEGER.   
             On entry, LDA specifies the first dimension of A as declared   
             in the calling (sub) program. LDA must be at least   
             max( 1, m ).   
             Unchanged on exit.   
    X      - DOUBLE PRECISION array of DIMENSION at least   
             ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'   
             and at least   
             ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.   
             Before entry, the incremented array X must contain the   
             vector x.   
             Unchanged on exit.   
    INCX   - INTEGER.   
             On entry, INCX specifies the increment for the elements of   
             X. INCX must not be zero.   
             Unchanged on exit.   
    BETA   - DOUBLE PRECISION.   
             On entry, BETA specifies the scalar beta. When BETA is   
             supplied as zero then Y need not be set on input.   
             Unchanged on exit.   
    Y      - DOUBLE PRECISION array of DIMENSION at least   
             ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'   
             and at least   
             ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.   
             Before entry with BETA non-zero, the incremented array Y   
             must contain the vector y. On exit, Y is overwritten by the   
             updated vector y.   
    INCY   - INTEGER.   
             On entry, INCY specifies the increment for the elements of   
             Y. INCY must not be zero.   
             Unchanged on exit.   
    Level 2 Blas routine.   
    -- Written on 22-October-1986.   
       Jack Dongarra, Argonne National Lab.   
       Jeremy Du Croz, Nag Central Office.   
       Sven Hammarling, Nag Central Office.   
       Richard Hanson, Sandia National Labs.   
       Test the input parameters.   
       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --x;
    --y;
    /* Function Body */
    info = 0;
    if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")
	    ) {
	info = 1;
    } else if (*m < 0) {
	info = 2;
    } else if (*n < 0) {
	info = 3;
    } else if (*lda < max(1,*m)) {
	info = 6;
    } else if (*incx == 0) {
	info = 8;
    } else if (*incy == 0) {
	info = 11;
    }
    if (info != 0) {
	xerbla_("DGEMV ", &info);
	return 0;
    }
/*     Quick return if possible. */
    if (*m == 0 || *n == 0 || *alpha == 0. && *beta == 1.) {
	return 0;
    }
/*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set   
       up the start points in  X  and  Y. */
    if (lsame_(trans, "N")) {
	lenx = *n;
	leny = *m;
    } else {
	lenx = *m;
	leny = *n;
    }
    if (*incx > 0) {
	kx = 1;
    } else {
	kx = 1 - (lenx - 1) * *incx;
    }
    if (*incy > 0) {
	ky = 1;
    } else {
	ky = 1 - (leny - 1) * *incy;
    }
/*     Start the operations. In this version the elements of A are   
       accessed sequentially with one pass through A.   
       First form  y := beta*y. */
    if (*beta != 1.) {
	if (*incy == 1) {
	    if (*beta == 0.) {
		i__1 = leny;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    y[i__] = 0.;
/* L10: */
		}
	    } else {
		i__1 = leny;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    y[i__] = *beta * y[i__];
/* L20: */
		}
	    }
	} else {
	    iy = ky;
	    if (*beta == 0.) {
		i__1 = leny;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    y[iy] = 0.;
		    iy += *incy;
/* L30: */
		}
	    } else {
		i__1 = leny;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    y[iy] = *beta * y[iy];
		    iy += *incy;
/* L40: */
		}
	    }
	}
    }
    if (*alpha == 0.) {
	return 0;
    }
    if (lsame_(trans, "N")) {
/*        Form  y := alpha*A*x + y. */
	jx = kx;
	if (*incy == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (x[jx] != 0.) {
		    temp = *alpha * x[jx];
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			y[i__] += temp * a[i__ + j * a_dim1];
/* L50: */
		    }
		}
		jx += *incx;
/* L60: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (x[jx] != 0.) {
		    temp = *alpha * x[jx];
		    iy = ky;
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			y[iy] += temp * a[i__ + j * a_dim1];
			iy += *incy;
/* L70: */
		    }
		}
		jx += *incx;
/* L80: */
	    }
	}
    } else {
/*        Form  y := alpha*A'*x + y. */
	jy = ky;
	if (*incx == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		temp = 0.;
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    temp += a[i__ + j * a_dim1] * x[i__];
/* L90: */
		}
		y[jy] += *alpha * temp;
		jy += *incy;
/* L100: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		temp = 0.;
		ix = kx;
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    temp += a[i__ + j * a_dim1] * x[ix];
		    ix += *incx;
/* L110: */
		}
		y[jy] += *alpha * temp;
		jy += *incy;
/* L120: */
	    }
	}
    }
    return 0;
/*     End of DGEMV . */
} /* dgemv_ */