#include "blaswrap.h"
#include "f2c.h"

/* Subroutine */ int cgemv_(char *trans, integer *m, integer *n, complex *
	alpha, complex *a, integer *lda, complex *x, integer *incx, complex *
	beta, complex *y, integer *incy)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
    complex q__1, q__2, q__3;
    /* Builtin functions */
    void r_cnjg(complex *, complex *);
    /* Local variables */
    static integer i__, j, ix, iy, jx, jy, kx, ky, info;
    static complex temp;
    static integer lenx, leny;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static logical noconj;
/*  Purpose   
    =======   
    CGEMV performs one of the matrix-vector operations   
       y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,   or   
       y := alpha*conjg( A' )*x + beta*y,   
    where alpha and beta are scalars, x and y are vectors and A is an   
    m by n matrix.   
    Arguments   
    ==========   
    TRANS  - CHARACTER*1.   
             On entry, TRANS specifies the operation to be performed as   
             follows:   
                TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.   
                TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.   
                TRANS = 'C' or 'c'   y := alpha*conjg( A' )*x + beta*y.   
             Unchanged on exit.   
    M      - INTEGER.   
             On entry, M specifies the number of rows of the matrix A.   
             M must be at least zero.   
             Unchanged on exit.   
    N      - INTEGER.   
             On entry, N specifies the number of columns of the matrix A.   
             N must be at least zero.   
             Unchanged on exit.   
    ALPHA  - COMPLEX         .   
             On entry, ALPHA specifies the scalar alpha.   
             Unchanged on exit.   
    A      - COMPLEX          array of DIMENSION ( LDA, n ).   
             Before entry, the leading m by n part of the array A must   
             contain the matrix of coefficients.   
             Unchanged on exit.   
    LDA    - INTEGER.   
             On entry, LDA specifies the first dimension of A as declared   
             in the calling (sub) program. LDA must be at least   
             max( 1, m ).   
             Unchanged on exit.   
    X      - COMPLEX          array of DIMENSION at least   
             ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'   
             and at least   
             ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.   
             Before entry, the incremented array X must contain the   
             vector x.   
             Unchanged on exit.   
    INCX   - INTEGER.   
             On entry, INCX specifies the increment for the elements of   
             X. INCX must not be zero.   
             Unchanged on exit.   
    BETA   - COMPLEX         .   
             On entry, BETA specifies the scalar beta. When BETA is   
             supplied as zero then Y need not be set on input.   
             Unchanged on exit.   
    Y      - COMPLEX          array of DIMENSION at least   
             ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'   
             and at least   
             ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.   
             Before entry with BETA non-zero, the incremented array Y   
             must contain the vector y. On exit, Y is overwritten by the   
             updated vector y.   
    INCY   - INTEGER.   
             On entry, INCY specifies the increment for the elements of   
             Y. INCY must not be zero.   
             Unchanged on exit.   
    Level 2 Blas routine.   
    -- Written on 22-October-1986.   
       Jack Dongarra, Argonne National Lab.   
       Jeremy Du Croz, Nag Central Office.   
       Sven Hammarling, Nag Central Office.   
       Richard Hanson, Sandia National Labs.   
       Test the input parameters.   
       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --x;
    --y;
    /* Function Body */
    info = 0;
    if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")
	    ) {
	info = 1;
    } else if (*m < 0) {
	info = 2;
    } else if (*n < 0) {
	info = 3;
    } else if (*lda < max(1,*m)) {
	info = 6;
    } else if (*incx == 0) {
	info = 8;
    } else if (*incy == 0) {
	info = 11;
    }
    if (info != 0) {
	xerbla_("CGEMV ", &info);
	return 0;
    }
/*     Quick return if possible. */
    if (*m == 0 || *n == 0 || alpha->r == 0.f && alpha->i == 0.f && (beta->r 
	    == 1.f && beta->i == 0.f)) {
	return 0;
    }
    noconj = lsame_(trans, "T");
/*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set   
       up the start points in  X  and  Y. */
    if (lsame_(trans, "N")) {
	lenx = *n;
	leny = *m;
    } else {
	lenx = *m;
	leny = *n;
    }
    if (*incx > 0) {
	kx = 1;
    } else {
	kx = 1 - (lenx - 1) * *incx;
    }
    if (*incy > 0) {
	ky = 1;
    } else {
	ky = 1 - (leny - 1) * *incy;
    }
/*     Start the operations. In this version the elements of A are   
       accessed sequentially with one pass through A.   
       First form  y := beta*y. */
    if (beta->r != 1.f || beta->i != 0.f) {
	if (*incy == 1) {
	    if (beta->r == 0.f && beta->i == 0.f) {
		i__1 = leny;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    i__2 = i__;
		    y[i__2].r = 0.f, y[i__2].i = 0.f;
/* L10: */
		}
	    } else {
		i__1 = leny;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    i__2 = i__;
		    i__3 = i__;
		    q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, 
			    q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
			    .r;
		    y[i__2].r = q__1.r, y[i__2].i = q__1.i;
/* L20: */
		}
	    }
	} else {
	    iy = ky;
	    if (beta->r == 0.f && beta->i == 0.f) {
		i__1 = leny;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    i__2 = iy;
		    y[i__2].r = 0.f, y[i__2].i = 0.f;
		    iy += *incy;
/* L30: */
		}
	    } else {
		i__1 = leny;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    i__2 = iy;
		    i__3 = iy;
		    q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, 
			    q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
			    .r;
		    y[i__2].r = q__1.r, y[i__2].i = q__1.i;
		    iy += *incy;
/* L40: */
		}
	    }
	}
    }
    if (alpha->r == 0.f && alpha->i == 0.f) {
	return 0;
    }
    if (lsame_(trans, "N")) {
/*        Form  y := alpha*A*x + y. */
	jx = kx;
	if (*incy == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = jx;
		if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
		    i__2 = jx;
		    q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, 
			    q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
			    .r;
		    temp.r = q__1.r, temp.i = q__1.i;
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = i__;
			i__4 = i__;
			i__5 = i__ + j * a_dim1;
			q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, 
				q__2.i = temp.r * a[i__5].i + temp.i * a[i__5]
				.r;
			q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + 
				q__2.i;
			y[i__3].r = q__1.r, y[i__3].i = q__1.i;
/* L50: */
		    }
		}
		jx += *incx;
/* L60: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = jx;
		if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
		    i__2 = jx;
		    q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, 
			    q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
			    .r;
		    temp.r = q__1.r, temp.i = q__1.i;
		    iy = ky;
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = iy;
			i__4 = iy;
			i__5 = i__ + j * a_dim1;
			q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, 
				q__2.i = temp.r * a[i__5].i + temp.i * a[i__5]
				.r;
			q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + 
				q__2.i;
			y[i__3].r = q__1.r, y[i__3].i = q__1.i;
			iy += *incy;
/* L70: */
		    }
		}
		jx += *incx;
/* L80: */
	    }
	}
    } else {
/*        Form  y := alpha*A'*x + y  or  y := alpha*conjg( A' )*x + y. */
	jy = ky;
	if (*incx == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		temp.r = 0.f, temp.i = 0.f;
		if (noconj) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = i__ + j * a_dim1;
			i__4 = i__;
			q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4]
				.i, q__2.i = a[i__3].r * x[i__4].i + a[i__3]
				.i * x[i__4].r;
			q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
			temp.r = q__1.r, temp.i = q__1.i;
/* L90: */
		    }
		} else {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			r_cnjg(&q__3, &a[i__ + j * a_dim1]);
			i__3 = i__;
			q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, 
				q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3]
				.r;
			q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
			temp.r = q__1.r, temp.i = q__1.i;
/* L100: */
		    }
		}
		i__2 = jy;
		i__3 = jy;
		q__2.r = alpha->r * temp.r - alpha->i * temp.i, q__2.i = 
			alpha->r * temp.i + alpha->i * temp.r;
		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
		jy += *incy;
/* L110: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		temp.r = 0.f, temp.i = 0.f;
		ix = kx;
		if (noconj) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = i__ + j * a_dim1;
			i__4 = ix;
			q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4]
				.i, q__2.i = a[i__3].r * x[i__4].i + a[i__3]
				.i * x[i__4].r;
			q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
			temp.r = q__1.r, temp.i = q__1.i;
			ix += *incx;
/* L120: */
		    }
		} else {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			r_cnjg(&q__3, &a[i__ + j * a_dim1]);
			i__3 = ix;
			q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, 
				q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3]
				.r;
			q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
			temp.r = q__1.r, temp.i = q__1.i;
			ix += *incx;
/* L130: */
		    }
		}
		i__2 = jy;
		i__3 = jy;
		q__2.r = alpha->r * temp.r - alpha->i * temp.i, q__2.i = 
			alpha->r * temp.i + alpha->i * temp.r;
		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
		y[i__2].r = q__1.r, y[i__2].i = q__1.i;
		jy += *incy;
/* L140: */
	    }
	}
    }
    return 0;
/*     End of CGEMV . */
} /* cgemv_ */