#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__0 = 0;
static integer c__1 = 1;

/* Subroutine */ int zlatmr_(integer *m, integer *n, char *dist, integer *
	iseed, char *sym, doublecomplex *d__, integer *mode, doublereal *cond, 
	 doublecomplex *dmax__, char *rsign, char *grade, doublecomplex *dl, 
	integer *model, doublereal *condl, doublecomplex *dr, integer *moder, 
	doublereal *condr, char *pivtng, integer *ipivot, integer *kl, 
	integer *ku, doublereal *sparse, doublereal *anorm, char *pack, 
	doublecomplex *a, integer *lda, integer *iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
    doublereal d__1, d__2;
    doublecomplex z__1, z__2;

    /* Builtin functions */
    double z_abs(doublecomplex *);
    void d_cnjg(doublecomplex *, doublecomplex *);

    /* Local variables */
    integer i__, j, k, kll, kuu, isub, jsub;
    doublereal temp;
    integer isym, ipack;
    extern logical lsame_(char *, char *);
    doublereal tempa[1];
    doublecomplex ctemp;
    integer iisub, idist, jjsub, mnmin;
    logical dzero;
    integer mnsub;
    doublereal onorm;
    integer mxsub, npvts;
    extern /* Subroutine */ int zlatm1_(integer *, doublereal *, integer *, 
	    integer *, integer *, doublecomplex *, integer *, integer *);
    extern /* Double Complex */ VOID zlatm2_(doublecomplex *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, integer *, doublereal *), zlatm3_(
	    doublecomplex *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *, doublereal *);
    doublecomplex calpha;
    integer igrade;
    logical fulbnd;
    extern doublereal zlangb_(char *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    logical badpvt;
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int zdscal_(integer *, doublereal *, 
	    doublecomplex *, integer *);
    extern doublereal zlansb_(char *, char *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *);
    integer irsign, ipvtng;
    extern doublereal zlansp_(char *, char *, integer *, doublecomplex *, 
	    doublereal *), zlansy_(char *, char *, integer *, 
	    doublecomplex *, integer *, doublereal *);


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*     ZLATMR generates random matrices of various types for testing */
/*     LAPACK programs. */

/*     ZLATMR operates by applying the following sequence of */
/*     operations: */

/*       Generate a matrix A with random entries of distribution DIST */
/*          which is symmetric if SYM='S', Hermitian if SYM='H', and */
/*          nonsymmetric if SYM='N'. */

/*       Set the diagonal to D, where D may be input or */
/*          computed according to MODE, COND, DMAX and RSIGN */
/*          as described below. */

/*       Grade the matrix, if desired, from the left and/or right */
/*          as specified by GRADE. The inputs DL, MODEL, CONDL, DR, */
/*          MODER and CONDR also determine the grading as described */
/*          below. */

/*       Permute, if desired, the rows and/or columns as specified by */
/*          PIVTNG and IPIVOT. */

/*       Set random entries to zero, if desired, to get a random sparse */
/*          matrix as specified by SPARSE. */

/*       Make A a band matrix, if desired, by zeroing out the matrix */
/*          outside a band of lower bandwidth KL and upper bandwidth KU. */

/*       Scale A, if desired, to have maximum entry ANORM. */

/*       Pack the matrix if desired. Options specified by PACK are: */
/*          no packing */
/*          zero out upper half (if symmetric or Hermitian) */
/*          zero out lower half (if symmetric or Hermitian) */
/*          store the upper half columnwise (if symmetric or Hermitian */
/*              or square upper triangular) */
/*          store the lower half columnwise (if symmetric or Hermitian */
/*              or square lower triangular) */
/*              same as upper half rowwise if symmetric */
/*              same as conjugate upper half rowwise if Hermitian */
/*          store the lower triangle in banded format */
/*              (if symmetric or Hermitian) */
/*          store the upper triangle in banded format */
/*              (if symmetric or Hermitian) */
/*          store the entire matrix in banded format */

/*     Note: If two calls to ZLATMR differ only in the PACK parameter, */
/*           they will generate mathematically equivalent matrices. */

/*           If two calls to ZLATMR both have full bandwidth (KL = M-1 */
/*           and KU = N-1), and differ only in the PIVTNG and PACK */
/*           parameters, then the matrices generated will differ only */
/*           in the order of the rows and/or columns, and otherwise */
/*           contain the same data. This consistency cannot be and */
/*           is not maintained with less than full bandwidth. */

/*  Arguments */
/*  ========= */

/*  M      - INTEGER */
/*           Number of rows of A. Not modified. */

/*  N      - INTEGER */
/*           Number of columns of A. Not modified. */

/*  DIST   - CHARACTER*1 */
/*           On entry, DIST specifies the type of distribution to be used */
/*           to generate a random matrix . */
/*           'U' => real and imaginary parts are independent */
/*                  UNIFORM( 0, 1 )  ( 'U' for uniform ) */
/*           'S' => real and imaginary parts are independent */
/*                  UNIFORM( -1, 1 ) ( 'S' for symmetric ) */
/*           'N' => real and imaginary parts are independent */
/*                  NORMAL( 0, 1 )   ( 'N' for normal ) */
/*           'D' => uniform on interior of unit disk ( 'D' for disk ) */
/*           Not modified. */

/*  ISEED  - INTEGER array, dimension (4) */
/*           On entry ISEED specifies the seed of the random number */
/*           generator. They should lie between 0 and 4095 inclusive, */
/*           and ISEED(4) should be odd. The random number generator */
/*           uses a linear congruential sequence limited to small */
/*           integers, and so should produce machine independent */
/*           random numbers. The values of ISEED are changed on */
/*           exit, and can be used in the next call to ZLATMR */
/*           to continue the same random number sequence. */
/*           Changed on exit. */

/*  SYM    - CHARACTER*1 */
/*           If SYM='S', generated matrix is symmetric. */
/*           If SYM='H', generated matrix is Hermitian. */
/*           If SYM='N', generated matrix is nonsymmetric. */
/*           Not modified. */

/*  D      - COMPLEX*16 array, dimension (min(M,N)) */
/*           On entry this array specifies the diagonal entries */
/*           of the diagonal of A.  D may either be specified */
/*           on entry, or set according to MODE and COND as described */
/*           below. If the matrix is Hermitian, the real part of D */
/*           will be taken. May be changed on exit if MODE is nonzero. */

/*  MODE   - INTEGER */
/*           On entry describes how D is to be used: */
/*           MODE = 0 means use D as input */
/*           MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */
/*           MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */
/*           MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */
/*           MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
/*           MODE = 5 sets D to random numbers in the range */
/*                    ( 1/COND , 1 ) such that their logarithms */
/*                    are uniformly distributed. */
/*           MODE = 6 set D to random numbers from same distribution */
/*                    as the rest of the matrix. */
/*           MODE < 0 has the same meaning as ABS(MODE), except that */
/*              the order of the elements of D is reversed. */
/*           Thus if MODE is positive, D has entries ranging from */
/*              1 to 1/COND, if negative, from 1/COND to 1, */
/*           Not modified. */

/*  COND   - DOUBLE PRECISION */
/*           On entry, used as described under MODE above. */
/*           If used, it must be >= 1. Not modified. */

/*  DMAX   - COMPLEX*16 */
/*           If MODE neither -6, 0 nor 6, the diagonal is scaled by */
/*           DMAX / max(abs(D(i))), so that maximum absolute entry */
/*           of diagonal is abs(DMAX). If DMAX is complex (or zero), */
/*           diagonal will be scaled by a complex number (or zero). */

/*  RSIGN  - CHARACTER*1 */
/*           If MODE neither -6, 0 nor 6, specifies sign of diagonal */
/*           as follows: */
/*           'T' => diagonal entries are multiplied by a random complex */
/*                  number uniformly distributed with absolute value 1 */
/*           'F' => diagonal unchanged */
/*           Not modified. */

/*  GRADE  - CHARACTER*1 */
/*           Specifies grading of matrix as follows: */
/*           'N'  => no grading */
/*           'L'  => matrix premultiplied by diag( DL ) */
/*                   (only if matrix nonsymmetric) */
/*           'R'  => matrix postmultiplied by diag( DR ) */
/*                   (only if matrix nonsymmetric) */
/*           'B'  => matrix premultiplied by diag( DL ) and */
/*                         postmultiplied by diag( DR ) */
/*                   (only if matrix nonsymmetric) */
/*           'H'  => matrix premultiplied by diag( DL ) and */
/*                         postmultiplied by diag( CONJG(DL) ) */
/*                   (only if matrix Hermitian or nonsymmetric) */
/*           'S'  => matrix premultiplied by diag( DL ) and */
/*                         postmultiplied by diag( DL ) */
/*                   (only if matrix symmetric or nonsymmetric) */
/*           'E'  => matrix premultiplied by diag( DL ) and */
/*                         postmultiplied by inv( diag( DL ) ) */
/*                         ( 'S' for similarity ) */
/*                   (only if matrix nonsymmetric) */
/*                   Note: if GRADE='S', then M must equal N. */
/*           Not modified. */

/*  DL     - COMPLEX*16 array, dimension (M) */
/*           If MODEL=0, then on entry this array specifies the diagonal */
/*           entries of a diagonal matrix used as described under GRADE */
/*           above. If MODEL is not zero, then DL will be set according */
/*           to MODEL and CONDL, analogous to the way D is set according */
/*           to MODE and COND (except there is no DMAX parameter for DL). */
/*           If GRADE='E', then DL cannot have zero entries. */
/*           Not referenced if GRADE = 'N' or 'R'. Changed on exit. */

/*  MODEL  - INTEGER */
/*           This specifies how the diagonal array DL is to be computed, */
/*           just as MODE specifies how D is to be computed. */
/*           Not modified. */

/*  CONDL  - DOUBLE PRECISION */
/*           When MODEL is not zero, this specifies the condition number */
/*           of the computed DL.  Not modified. */

/*  DR     - COMPLEX*16 array, dimension (N) */
/*           If MODER=0, then on entry this array specifies the diagonal */
/*           entries of a diagonal matrix used as described under GRADE */
/*           above. If MODER is not zero, then DR will be set according */
/*           to MODER and CONDR, analogous to the way D is set according */
/*           to MODE and COND (except there is no DMAX parameter for DR). */
/*           Not referenced if GRADE = 'N', 'L', 'H' or 'S'. */
/*           Changed on exit. */

/*  MODER  - INTEGER */
/*           This specifies how the diagonal array DR is to be computed, */
/*           just as MODE specifies how D is to be computed. */
/*           Not modified. */

/*  CONDR  - DOUBLE PRECISION */
/*           When MODER is not zero, this specifies the condition number */
/*           of the computed DR.  Not modified. */

/*  PIVTNG - CHARACTER*1 */
/*           On entry specifies pivoting permutations as follows: */
/*           'N' or ' ' => none. */
/*           'L' => left or row pivoting (matrix must be nonsymmetric). */
/*           'R' => right or column pivoting (matrix must be */
/*                  nonsymmetric). */
/*           'B' or 'F' => both or full pivoting, i.e., on both sides. */
/*                         In this case, M must equal N */

/*           If two calls to ZLATMR both have full bandwidth (KL = M-1 */
/*           and KU = N-1), and differ only in the PIVTNG and PACK */
/*           parameters, then the matrices generated will differ only */
/*           in the order of the rows and/or columns, and otherwise */
/*           contain the same data. This consistency cannot be */
/*           maintained with less than full bandwidth. */

/*  IPIVOT - INTEGER array, dimension (N or M) */
/*           This array specifies the permutation used.  After the */
/*           basic matrix is generated, the rows, columns, or both */
/*           are permuted.   If, say, row pivoting is selected, ZLATMR */
/*           starts with the *last* row and interchanges the M-th and */
/*           IPIVOT(M)-th rows, then moves to the next-to-last row, */
/*           interchanging the (M-1)-th and the IPIVOT(M-1)-th rows, */
/*           and so on.  In terms of "2-cycles", the permutation is */
/*           (1 IPIVOT(1)) (2 IPIVOT(2)) ... (M IPIVOT(M)) */
/*           where the rightmost cycle is applied first.  This is the */
/*           *inverse* of the effect of pivoting in LINPACK.  The idea */
/*           is that factoring (with pivoting) an identity matrix */
/*           which has been inverse-pivoted in this way should */
/*           result in a pivot vector identical to IPIVOT. */
/*           Not referenced if PIVTNG = 'N'. Not modified. */

/*  SPARSE - DOUBLE PRECISION */
/*           On entry specifies the sparsity of the matrix if a sparse */
/*           matrix is to be generated. SPARSE should lie between */
/*           0 and 1. To generate a sparse matrix, for each matrix entry */
/*           a uniform ( 0, 1 ) random number x is generated and */
/*           compared to SPARSE; if x is larger the matrix entry */
/*           is unchanged and if x is smaller the entry is set */
/*           to zero. Thus on the average a fraction SPARSE of the */
/*           entries will be set to zero. */
/*           Not modified. */

/*  KL     - INTEGER */
/*           On entry specifies the lower bandwidth of the  matrix. For */
/*           example, KL=0 implies upper triangular, KL=1 implies upper */
/*           Hessenberg, and KL at least M-1 implies the matrix is not */
/*           banded. Must equal KU if matrix is symmetric or Hermitian. */
/*           Not modified. */

/*  KU     - INTEGER */
/*           On entry specifies the upper bandwidth of the  matrix. For */
/*           example, KU=0 implies lower triangular, KU=1 implies lower */
/*           Hessenberg, and KU at least N-1 implies the matrix is not */
/*           banded. Must equal KL if matrix is symmetric or Hermitian. */
/*           Not modified. */

/*  ANORM  - DOUBLE PRECISION */
/*           On entry specifies maximum entry of output matrix */
/*           (output matrix will by multiplied by a constant so that */
/*           its largest absolute entry equal ANORM) */
/*           if ANORM is nonnegative. If ANORM is negative no scaling */
/*           is done. Not modified. */

/*  PACK   - CHARACTER*1 */
/*           On entry specifies packing of matrix as follows: */
/*           'N' => no packing */
/*           'U' => zero out all subdiagonal entries */
/*                  (if symmetric or Hermitian) */
/*           'L' => zero out all superdiagonal entries */
/*                  (if symmetric or Hermitian) */
/*           'C' => store the upper triangle columnwise */
/*                  (only if matrix symmetric or Hermitian or */
/*                   square upper triangular) */
/*           'R' => store the lower triangle columnwise */
/*                  (only if matrix symmetric or Hermitian or */
/*                   square lower triangular) */
/*                  (same as upper half rowwise if symmetric) */
/*                  (same as conjugate upper half rowwise if Hermitian) */
/*           'B' => store the lower triangle in band storage scheme */
/*                  (only if matrix symmetric or Hermitian) */
/*           'Q' => store the upper triangle in band storage scheme */
/*                  (only if matrix symmetric or Hermitian) */
/*           'Z' => store the entire matrix in band storage scheme */
/*                      (pivoting can be provided for by using this */
/*                      option to store A in the trailing rows of */
/*                      the allocated storage) */

/*           Using these options, the various LAPACK packed and banded */
/*           storage schemes can be obtained: */
/*           GB               - use 'Z' */
/*           PB, HB or TB     - use 'B' or 'Q' */
/*           PP, HP or TP     - use 'C' or 'R' */

/*           If two calls to ZLATMR differ only in the PACK parameter, */
/*           they will generate mathematically equivalent matrices. */
/*           Not modified. */

/*  A      - COMPLEX*16 array, dimension (LDA,N) */
/*           On exit A is the desired test matrix. Only those */
/*           entries of A which are significant on output */
/*           will be referenced (even if A is in packed or band */
/*           storage format). The 'unoccupied corners' of A in */
/*           band format will be zeroed out. */

/*  LDA    - INTEGER */
/*           on entry LDA specifies the first dimension of A as */
/*           declared in the calling program. */
/*           If PACK='N', 'U' or 'L', LDA must be at least max ( 1, M ). */
/*           If PACK='C' or 'R', LDA must be at least 1. */
/*           If PACK='B', or 'Q', LDA must be MIN ( KU+1, N ) */
/*           If PACK='Z', LDA must be at least KUU+KLL+1, where */
/*           KUU = MIN ( KU, N-1 ) and KLL = MIN ( KL, N-1 ) */
/*           Not modified. */

/*  IWORK  - INTEGER array, dimension (N or M) */
/*           Workspace. Not referenced if PIVTNG = 'N'. Changed on exit. */

/*  INFO   - INTEGER */
/*           Error parameter on exit: */
/*             0 => normal return */
/*            -1 => M negative or unequal to N and SYM='S' or 'H' */
/*            -2 => N negative */
/*            -3 => DIST illegal string */
/*            -5 => SYM illegal string */
/*            -7 => MODE not in range -6 to 6 */
/*            -8 => COND less than 1.0, and MODE neither -6, 0 nor 6 */
/*           -10 => MODE neither -6, 0 nor 6 and RSIGN illegal string */
/*           -11 => GRADE illegal string, or GRADE='E' and */
/*                  M not equal to N, or GRADE='L', 'R', 'B', 'S' or 'E' */
/*                  and SYM = 'H', or GRADE='L', 'R', 'B', 'H' or 'E' */
/*                  and SYM = 'S' */
/*           -12 => GRADE = 'E' and DL contains zero */
/*           -13 => MODEL not in range -6 to 6 and GRADE= 'L', 'B', 'H', */
/*                  'S' or 'E' */
/*           -14 => CONDL less than 1.0, GRADE='L', 'B', 'H', 'S' or 'E', */
/*                  and MODEL neither -6, 0 nor 6 */
/*           -16 => MODER not in range -6 to 6 and GRADE= 'R' or 'B' */
/*           -17 => CONDR less than 1.0, GRADE='R' or 'B', and */
/*                  MODER neither -6, 0 nor 6 */
/*           -18 => PIVTNG illegal string, or PIVTNG='B' or 'F' and */
/*                  M not equal to N, or PIVTNG='L' or 'R' and SYM='S' */
/*                  or 'H' */
/*           -19 => IPIVOT contains out of range number and */
/*                  PIVTNG not equal to 'N' */
/*           -20 => KL negative */
/*           -21 => KU negative, or SYM='S' or 'H' and KU not equal to KL */
/*           -22 => SPARSE not in range 0. to 1. */
/*           -24 => PACK illegal string, or PACK='U', 'L', 'B' or 'Q' */
/*                  and SYM='N', or PACK='C' and SYM='N' and either KL */
/*                  not equal to 0 or N not equal to M, or PACK='R' and */
/*                  SYM='N', and either KU not equal to 0 or N not equal */
/*                  to M */
/*           -26 => LDA too small */
/*             1 => Error return from ZLATM1 (computing D) */
/*             2 => Cannot scale diagonal to DMAX (max. entry is 0) */
/*             3 => Error return from ZLATM1 (computing DL) */
/*             4 => Error return from ZLATM1 (computing DR) */
/*             5 => ANORM is positive, but matrix constructed prior to */
/*                  attempting to scale it to have norm ANORM, is zero */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     1)      Decode and Test the input parameters. */
/*             Initialize flags & seed. */

    /* Parameter adjustments */
    --iseed;
    --d__;
    --dl;
    --dr;
    --ipivot;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --iwork;

    /* Function Body */
    *info = 0;

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	return 0;
    }

/*     Decode DIST */

    if (lsame_(dist, "U")) {
	idist = 1;
    } else if (lsame_(dist, "S")) {
	idist = 2;
    } else if (lsame_(dist, "N")) {
	idist = 3;
    } else if (lsame_(dist, "D")) {
	idist = 4;
    } else {
	idist = -1;
    }

/*     Decode SYM */

    if (lsame_(sym, "H")) {
	isym = 0;
    } else if (lsame_(sym, "N")) {
	isym = 1;
    } else if (lsame_(sym, "S")) {
	isym = 2;
    } else {
	isym = -1;
    }

/*     Decode RSIGN */

    if (lsame_(rsign, "F")) {
	irsign = 0;
    } else if (lsame_(rsign, "T")) {
	irsign = 1;
    } else {
	irsign = -1;
    }

/*     Decode PIVTNG */

    if (lsame_(pivtng, "N")) {
	ipvtng = 0;
    } else if (lsame_(pivtng, " ")) {
	ipvtng = 0;
    } else if (lsame_(pivtng, "L")) {
	ipvtng = 1;
	npvts = *m;
    } else if (lsame_(pivtng, "R")) {
	ipvtng = 2;
	npvts = *n;
    } else if (lsame_(pivtng, "B")) {
	ipvtng = 3;
	npvts = min(*n,*m);
    } else if (lsame_(pivtng, "F")) {
	ipvtng = 3;
	npvts = min(*n,*m);
    } else {
	ipvtng = -1;
    }

/*     Decode GRADE */

    if (lsame_(grade, "N")) {
	igrade = 0;
    } else if (lsame_(grade, "L")) {
	igrade = 1;
    } else if (lsame_(grade, "R")) {
	igrade = 2;
    } else if (lsame_(grade, "B")) {
	igrade = 3;
    } else if (lsame_(grade, "E")) {
	igrade = 4;
    } else if (lsame_(grade, "H")) {
	igrade = 5;
    } else if (lsame_(grade, "S")) {
	igrade = 6;
    } else {
	igrade = -1;
    }

/*     Decode PACK */

    if (lsame_(pack, "N")) {
	ipack = 0;
    } else if (lsame_(pack, "U")) {
	ipack = 1;
    } else if (lsame_(pack, "L")) {
	ipack = 2;
    } else if (lsame_(pack, "C")) {
	ipack = 3;
    } else if (lsame_(pack, "R")) {
	ipack = 4;
    } else if (lsame_(pack, "B")) {
	ipack = 5;
    } else if (lsame_(pack, "Q")) {
	ipack = 6;
    } else if (lsame_(pack, "Z")) {
	ipack = 7;
    } else {
	ipack = -1;
    }

/*     Set certain internal parameters */

    mnmin = min(*m,*n);
/* Computing MIN */
    i__1 = *kl, i__2 = *m - 1;
    kll = min(i__1,i__2);
/* Computing MIN */
    i__1 = *ku, i__2 = *n - 1;
    kuu = min(i__1,i__2);

/*     If inv(DL) is used, check to see if DL has a zero entry. */

    dzero = FALSE_;
    if (igrade == 4 && *model == 0) {
	i__1 = *m;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = i__;
	    if (dl[i__2].r == 0. && dl[i__2].i == 0.) {
		dzero = TRUE_;
	    }
/* L10: */
	}
    }

/*     Check values in IPIVOT */

    badpvt = FALSE_;
    if (ipvtng > 0) {
	i__1 = npvts;
	for (j = 1; j <= i__1; ++j) {
	    if (ipivot[j] <= 0 || ipivot[j] > npvts) {
		badpvt = TRUE_;
	    }
/* L20: */
	}
    }

/*     Set INFO if an error */

    if (*m < 0) {
	*info = -1;
    } else if (*m != *n && (isym == 0 || isym == 2)) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (idist == -1) {
	*info = -3;
    } else if (isym == -1) {
	*info = -5;
    } else if (*mode < -6 || *mode > 6) {
	*info = -7;
    } else if (*mode != -6 && *mode != 0 && *mode != 6 && *cond < 1.) {
	*info = -8;
    } else if (*mode != -6 && *mode != 0 && *mode != 6 && irsign == -1) {
	*info = -10;
    } else if (igrade == -1 || igrade == 4 && *m != *n || (igrade == 1 || 
	    igrade == 2 || igrade == 3 || igrade == 4 || igrade == 6) && isym 
	    == 0 || (igrade == 1 || igrade == 2 || igrade == 3 || igrade == 4 
	    || igrade == 5) && isym == 2) {
	*info = -11;
    } else if (igrade == 4 && dzero) {
	*info = -12;
    } else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 || 
	    igrade == 6) && (*model < -6 || *model > 6)) {
	*info = -13;
    } else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 || 
	    igrade == 6) && (*model != -6 && *model != 0 && *model != 6) && *
	    condl < 1.) {
	*info = -14;
    } else if ((igrade == 2 || igrade == 3) && (*moder < -6 || *moder > 6)) {
	*info = -16;
    } else if ((igrade == 2 || igrade == 3) && (*moder != -6 && *moder != 0 &&
	     *moder != 6) && *condr < 1.) {
	*info = -17;
    } else if (ipvtng == -1 || ipvtng == 3 && *m != *n || (ipvtng == 1 || 
	    ipvtng == 2) && (isym == 0 || isym == 2)) {
	*info = -18;
    } else if (ipvtng != 0 && badpvt) {
	*info = -19;
    } else if (*kl < 0) {
	*info = -20;
    } else if (*ku < 0 || (isym == 0 || isym == 2) && *kl != *ku) {
	*info = -21;
    } else if (*sparse < 0. || *sparse > 1.) {
	*info = -22;
    } else if (ipack == -1 || (ipack == 1 || ipack == 2 || ipack == 5 || 
	    ipack == 6) && isym == 1 || ipack == 3 && isym == 1 && (*kl != 0 
	    || *m != *n) || ipack == 4 && isym == 1 && (*ku != 0 || *m != *n))
	     {
	*info = -24;
    } else if ((ipack == 0 || ipack == 1 || ipack == 2) && *lda < max(1,*m) ||
	     (ipack == 3 || ipack == 4) && *lda < 1 || (ipack == 5 || ipack ==
	     6) && *lda < kuu + 1 || ipack == 7 && *lda < kll + kuu + 1) {
	*info = -26;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZLATMR", &i__1);
	return 0;
    }

/*     Decide if we can pivot consistently */

    fulbnd = FALSE_;
    if (kuu == *n - 1 && kll == *m - 1) {
	fulbnd = TRUE_;
    }

/*     Initialize random number generator */

    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096;
/* L30: */
    }

    iseed[4] = (iseed[4] / 2 << 1) + 1;

/*     2)      Set up D, DL, and DR, if indicated. */

/*             Compute D according to COND and MODE */

    zlatm1_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], &mnmin, info);
    if (*info != 0) {
	*info = 1;
	return 0;
    }
    if (*mode != 0 && *mode != -6 && *mode != 6) {

/*        Scale by DMAX */

	temp = z_abs(&d__[1]);
	i__1 = mnmin;
	for (i__ = 2; i__ <= i__1; ++i__) {
/* Computing MAX */
	    d__1 = temp, d__2 = z_abs(&d__[i__]);
	    temp = max(d__1,d__2);
/* L40: */
	}
	if (temp == 0. && (dmax__->r != 0. || dmax__->i != 0.)) {
	    *info = 2;
	    return 0;
	}
	if (temp != 0.) {
	    z__1.r = dmax__->r / temp, z__1.i = dmax__->i / temp;
	    calpha.r = z__1.r, calpha.i = z__1.i;
	} else {
	    calpha.r = 1., calpha.i = 0.;
	}
	i__1 = mnmin;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = i__;
	    i__3 = i__;
	    z__1.r = calpha.r * d__[i__3].r - calpha.i * d__[i__3].i, z__1.i =
		     calpha.r * d__[i__3].i + calpha.i * d__[i__3].r;
	    d__[i__2].r = z__1.r, d__[i__2].i = z__1.i;
/* L50: */
	}

    }

/*     If matrix Hermitian, make D real */

    if (isym == 0) {
	i__1 = mnmin;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = i__;
	    i__3 = i__;
	    d__1 = d__[i__3].r;
	    d__[i__2].r = d__1, d__[i__2].i = 0.;
/* L60: */
	}
    }

/*     Compute DL if grading set */

    if (igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 || igrade == 
	    6) {
	zlatm1_(model, condl, &c__0, &idist, &iseed[1], &dl[1], m, info);
	if (*info != 0) {
	    *info = 3;
	    return 0;
	}
    }

/*     Compute DR if grading set */

    if (igrade == 2 || igrade == 3) {
	zlatm1_(moder, condr, &c__0, &idist, &iseed[1], &dr[1], n, info);
	if (*info != 0) {
	    *info = 4;
	    return 0;
	}
    }

/*     3)     Generate IWORK if pivoting */

    if (ipvtng > 0) {
	i__1 = npvts;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    iwork[i__] = i__;
/* L70: */
	}
	if (fulbnd) {
	    i__1 = npvts;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		k = ipivot[i__];
		j = iwork[i__];
		iwork[i__] = iwork[k];
		iwork[k] = j;
/* L80: */
	    }
	} else {
	    for (i__ = npvts; i__ >= 1; --i__) {
		k = ipivot[i__];
		j = iwork[i__];
		iwork[i__] = iwork[k];
		iwork[k] = j;
/* L90: */
	    }
	}
    }

/*     4)      Generate matrices for each kind of PACKing */
/*             Always sweep matrix columnwise (if symmetric, upper */
/*             half only) so that matrix generated does not depend */
/*             on PACK */

    if (fulbnd) {

/*        Use ZLATM3 so matrices generated with differing PIVOTing only */
/*        differ only in the order of their rows and/or columns. */

	if (ipack == 0) {
	    if (isym == 0) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
				idist, &iseed[1], &d__[1], &igrade, &dl[1], &
				dr[1], &ipvtng, &iwork[1], sparse);
			ctemp.r = z__1.r, ctemp.i = z__1.i;
			i__3 = isub + jsub * a_dim1;
			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
			i__3 = jsub + isub * a_dim1;
			d_cnjg(&z__1, &ctemp);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L100: */
		    }
/* L110: */
		}
	    } else if (isym == 1) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
				idist, &iseed[1], &d__[1], &igrade, &dl[1], &
				dr[1], &ipvtng, &iwork[1], sparse);
			ctemp.r = z__1.r, ctemp.i = z__1.i;
			i__3 = isub + jsub * a_dim1;
			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
/* L120: */
		    }
/* L130: */
		}
	    } else if (isym == 2) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
				idist, &iseed[1], &d__[1], &igrade, &dl[1], &
				dr[1], &ipvtng, &iwork[1], sparse);
			ctemp.r = z__1.r, ctemp.i = z__1.i;
			i__3 = isub + jsub * a_dim1;
			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
			i__3 = jsub + isub * a_dim1;
			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
/* L140: */
		    }
/* L150: */
		}
	    }

	} else if (ipack == 1) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
			    idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
		    ctemp.r = z__1.r, ctemp.i = z__1.i;
		    mnsub = min(isub,jsub);
		    mxsub = max(isub,jsub);
		    if (mxsub == isub && isym == 0) {
			i__3 = mnsub + mxsub * a_dim1;
			d_cnjg(&z__1, &ctemp);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
		    } else {
			i__3 = mnsub + mxsub * a_dim1;
			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
		    }
		    if (mnsub != mxsub) {
			i__3 = mxsub + mnsub * a_dim1;
			a[i__3].r = 0., a[i__3].i = 0.;
		    }
/* L160: */
		}
/* L170: */
	    }

	} else if (ipack == 2) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
			    idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
		    ctemp.r = z__1.r, ctemp.i = z__1.i;
		    mnsub = min(isub,jsub);
		    mxsub = max(isub,jsub);
		    if (mxsub == jsub && isym == 0) {
			i__3 = mxsub + mnsub * a_dim1;
			d_cnjg(&z__1, &ctemp);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
		    } else {
			i__3 = mxsub + mnsub * a_dim1;
			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
		    }
		    if (mnsub != mxsub) {
			i__3 = mnsub + mxsub * a_dim1;
			a[i__3].r = 0., a[i__3].i = 0.;
		    }
/* L180: */
		}
/* L190: */
	    }

	} else if (ipack == 3) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
			    idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
		    ctemp.r = z__1.r, ctemp.i = z__1.i;

/*                 Compute K = location of (ISUB,JSUB) entry in packed */
/*                 array */

		    mnsub = min(isub,jsub);
		    mxsub = max(isub,jsub);
		    k = mxsub * (mxsub - 1) / 2 + mnsub;

/*                 Convert K to (IISUB,JJSUB) location */

		    jjsub = (k - 1) / *lda + 1;
		    iisub = k - *lda * (jjsub - 1);

		    if (mxsub == isub && isym == 0) {
			i__3 = iisub + jjsub * a_dim1;
			d_cnjg(&z__1, &ctemp);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
		    } else {
			i__3 = iisub + jjsub * a_dim1;
			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
		    }
/* L200: */
		}
/* L210: */
	    }

	} else if (ipack == 4) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
			    idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
		    ctemp.r = z__1.r, ctemp.i = z__1.i;

/*                 Compute K = location of (I,J) entry in packed array */

		    mnsub = min(isub,jsub);
		    mxsub = max(isub,jsub);
		    if (mnsub == 1) {
			k = mxsub;
		    } else {
			k = *n * (*n + 1) / 2 - (*n - mnsub + 1) * (*n - 
				mnsub + 2) / 2 + mxsub - mnsub + 1;
		    }

/*                 Convert K to (IISUB,JJSUB) location */

		    jjsub = (k - 1) / *lda + 1;
		    iisub = k - *lda * (jjsub - 1);

		    if (mxsub == jsub && isym == 0) {
			i__3 = iisub + jjsub * a_dim1;
			d_cnjg(&z__1, &ctemp);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
		    } else {
			i__3 = iisub + jjsub * a_dim1;
			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
		    }
/* L220: */
		}
/* L230: */
	    }

	} else if (ipack == 5) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = j - kuu; i__ <= i__2; ++i__) {
		    if (i__ < 1) {
			i__3 = j - i__ + 1 + (i__ + *n) * a_dim1;
			a[i__3].r = 0., a[i__3].i = 0.;
		    } else {
			zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
				idist, &iseed[1], &d__[1], &igrade, &dl[1], &
				dr[1], &ipvtng, &iwork[1], sparse);
			ctemp.r = z__1.r, ctemp.i = z__1.i;
			mnsub = min(isub,jsub);
			mxsub = max(isub,jsub);
			if (mxsub == jsub && isym == 0) {
			    i__3 = mxsub - mnsub + 1 + mnsub * a_dim1;
			    d_cnjg(&z__1, &ctemp);
			    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
			} else {
			    i__3 = mxsub - mnsub + 1 + mnsub * a_dim1;
			    a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
			}
		    }
/* L240: */
		}
/* L250: */
	    }

	} else if (ipack == 6) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = j - kuu; i__ <= i__2; ++i__) {
		    zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
			    idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
		    ctemp.r = z__1.r, ctemp.i = z__1.i;
		    mnsub = min(isub,jsub);
		    mxsub = max(isub,jsub);
		    if (mxsub == isub && isym == 0) {
			i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
			d_cnjg(&z__1, &ctemp);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
		    } else {
			i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
		    }
/* L260: */
		}
/* L270: */
	    }

	} else if (ipack == 7) {

	    if (isym != 1) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = j - kuu; i__ <= i__2; ++i__) {
			zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
				idist, &iseed[1], &d__[1], &igrade, &dl[1], &
				dr[1], &ipvtng, &iwork[1], sparse);
			ctemp.r = z__1.r, ctemp.i = z__1.i;
			mnsub = min(isub,jsub);
			mxsub = max(isub,jsub);
			if (i__ < 1) {
			    i__3 = j - i__ + 1 + kuu + (i__ + *n) * a_dim1;
			    a[i__3].r = 0., a[i__3].i = 0.;
			}
			if (mxsub == isub && isym == 0) {
			    i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
			    d_cnjg(&z__1, &ctemp);
			    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
			} else {
			    i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
			    a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
			}
			if (i__ >= 1 && mnsub != mxsub) {
			    if (mnsub == isub && isym == 0) {
				i__3 = mxsub - mnsub + 1 + kuu + mnsub * 
					a_dim1;
				d_cnjg(&z__1, &ctemp);
				a[i__3].r = z__1.r, a[i__3].i = z__1.i;
			    } else {
				i__3 = mxsub - mnsub + 1 + kuu + mnsub * 
					a_dim1;
				a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
			    }
			}
/* L280: */
		    }
/* L290: */
		}
	    } else if (isym == 1) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j + kll;
		    for (i__ = j - kuu; i__ <= i__2; ++i__) {
			zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
				idist, &iseed[1], &d__[1], &igrade, &dl[1], &
				dr[1], &ipvtng, &iwork[1], sparse);
			ctemp.r = z__1.r, ctemp.i = z__1.i;
			i__3 = isub - jsub + kuu + 1 + jsub * a_dim1;
			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
/* L300: */
		    }
/* L310: */
		}
	    }

	}

    } else {

/*        Use ZLATM2 */

	if (ipack == 0) {
	    if (isym == 0) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = i__ + j * a_dim1;
			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, 
				 &iwork[1], sparse);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
			i__3 = j + i__ * a_dim1;
			d_cnjg(&z__1, &a[i__ + j * a_dim1]);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L320: */
		    }
/* L330: */
		}
	    } else if (isym == 1) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = i__ + j * a_dim1;
			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, 
				 &iwork[1], sparse);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L340: */
		    }
/* L350: */
		}
	    } else if (isym == 2) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = i__ + j * a_dim1;
			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, 
				 &iwork[1], sparse);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
			i__3 = j + i__ * a_dim1;
			i__4 = i__ + j * a_dim1;
			a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
/* L360: */
		    }
/* L370: */
		}
	    }

	} else if (ipack == 1) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = i__ + j * a_dim1;
		    zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[1], 
			    &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[
			    1], sparse);
		    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
		    if (i__ != j) {
			i__3 = j + i__ * a_dim1;
			a[i__3].r = 0., a[i__3].i = 0.;
		    }
/* L380: */
		}
/* L390: */
	    }

	} else if (ipack == 2) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    if (isym == 0) {
			i__3 = j + i__ * a_dim1;
			zlatm2_(&z__2, m, n, &i__, &j, kl, ku, &idist, &iseed[
				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, 
				 &iwork[1], sparse);
			d_cnjg(&z__1, &z__2);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
		    } else {
			i__3 = j + i__ * a_dim1;
			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, 
				 &iwork[1], sparse);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
		    }
		    if (i__ != j) {
			i__3 = i__ + j * a_dim1;
			a[i__3].r = 0., a[i__3].i = 0.;
		    }
/* L400: */
		}
/* L410: */
	    }

	} else if (ipack == 3) {

	    isub = 0;
	    jsub = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    ++isub;
		    if (isub > *lda) {
			isub = 1;
			++jsub;
		    }
		    i__3 = isub + jsub * a_dim1;
		    zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[1], 
			    &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[
			    1], sparse);
		    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L420: */
		}
/* L430: */
	    }

	} else if (ipack == 4) {

	    if (isym == 0 || isym == 2) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {

/*                    Compute K = location of (I,J) entry in packed array */

			if (i__ == 1) {
			    k = j;
			} else {
			    k = *n * (*n + 1) / 2 - (*n - i__ + 1) * (*n - 
				    i__ + 2) / 2 + j - i__ + 1;
			}

/*                    Convert K to (ISUB,JSUB) location */

			jsub = (k - 1) / *lda + 1;
			isub = k - *lda * (jsub - 1);

			i__3 = isub + jsub * a_dim1;
			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, 
				 &iwork[1], sparse);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
			if (isym == 0) {
			    i__3 = isub + jsub * a_dim1;
			    d_cnjg(&z__1, &a[isub + jsub * a_dim1]);
			    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
			}
/* L440: */
		    }
/* L450: */
		}
	    } else {
		isub = 0;
		jsub = 1;
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *m;
		    for (i__ = j; i__ <= i__2; ++i__) {
			++isub;
			if (isub > *lda) {
			    isub = 1;
			    ++jsub;
			}
			i__3 = isub + jsub * a_dim1;
			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, 
				 &iwork[1], sparse);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L460: */
		    }
/* L470: */
		}
	    }

	} else if (ipack == 5) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = j - kuu; i__ <= i__2; ++i__) {
		    if (i__ < 1) {
			i__3 = j - i__ + 1 + (i__ + *n) * a_dim1;
			a[i__3].r = 0., a[i__3].i = 0.;
		    } else {
			if (isym == 0) {
			    i__3 = j - i__ + 1 + i__ * a_dim1;
			    zlatm2_(&z__2, m, n, &i__, &j, kl, ku, &idist, &
				    iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
			    d_cnjg(&z__1, &z__2);
			    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
			} else {
			    i__3 = j - i__ + 1 + i__ * a_dim1;
			    zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &
				    iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
, &ipvtng, &iwork[1], sparse);
			    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
			}
		    }
/* L480: */
		}
/* L490: */
	    }

	} else if (ipack == 6) {

	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = j - kuu; i__ <= i__2; ++i__) {
		    i__3 = i__ - j + kuu + 1 + j * a_dim1;
		    zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[1], 
			    &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[
			    1], sparse);
		    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L500: */
		}
/* L510: */
	    }

	} else if (ipack == 7) {

	    if (isym != 1) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = j - kuu; i__ <= i__2; ++i__) {
			i__3 = i__ - j + kuu + 1 + j * a_dim1;
			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, 
				 &iwork[1], sparse);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
			if (i__ < 1) {
			    i__3 = j - i__ + 1 + kuu + (i__ + *n) * a_dim1;
			    a[i__3].r = 0., a[i__3].i = 0.;
			}
			if (i__ >= 1 && i__ != j) {
			    if (isym == 0) {
				i__3 = j - i__ + 1 + kuu + i__ * a_dim1;
				d_cnjg(&z__1, &a[i__ - j + kuu + 1 + j * 
					a_dim1]);
				a[i__3].r = z__1.r, a[i__3].i = z__1.i;
			    } else {
				i__3 = j - i__ + 1 + kuu + i__ * a_dim1;
				i__4 = i__ - j + kuu + 1 + j * a_dim1;
				a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
			    }
			}
/* L520: */
		    }
/* L530: */
		}
	    } else if (isym == 1) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j + kll;
		    for (i__ = j - kuu; i__ <= i__2; ++i__) {
			i__3 = i__ - j + kuu + 1 + j * a_dim1;
			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, 
				 &iwork[1], sparse);
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
/* L540: */
		    }
/* L550: */
		}
	    }

	}

    }

/*     5)      Scaling the norm */

    if (ipack == 0) {
	onorm = zlange_("M", m, n, &a[a_offset], lda, tempa);
    } else if (ipack == 1) {
	onorm = zlansy_("M", "U", n, &a[a_offset], lda, tempa);
    } else if (ipack == 2) {
	onorm = zlansy_("M", "L", n, &a[a_offset], lda, tempa);
    } else if (ipack == 3) {
	onorm = zlansp_("M", "U", n, &a[a_offset], tempa);
    } else if (ipack == 4) {
	onorm = zlansp_("M", "L", n, &a[a_offset], tempa);
    } else if (ipack == 5) {
	onorm = zlansb_("M", "L", n, &kll, &a[a_offset], lda, tempa);
    } else if (ipack == 6) {
	onorm = zlansb_("M", "U", n, &kuu, &a[a_offset], lda, tempa);
    } else if (ipack == 7) {
	onorm = zlangb_("M", n, &kll, &kuu, &a[a_offset], lda, tempa);
    }

    if (*anorm >= 0.) {

	if (*anorm > 0. && onorm == 0.) {

/*           Desired scaling impossible */

	    *info = 5;
	    return 0;

	} else if (*anorm > 1. && onorm < 1. || *anorm < 1. && onorm > 1.) {

/*           Scale carefully to avoid over / underflow */

	    if (ipack <= 2) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    d__1 = 1. / onorm;
		    zdscal_(m, &d__1, &a[j * a_dim1 + 1], &c__1);
		    zdscal_(m, anorm, &a[j * a_dim1 + 1], &c__1);
/* L560: */
		}

	    } else if (ipack == 3 || ipack == 4) {

		i__1 = *n * (*n + 1) / 2;
		d__1 = 1. / onorm;
		zdscal_(&i__1, &d__1, &a[a_offset], &c__1);
		i__1 = *n * (*n + 1) / 2;
		zdscal_(&i__1, anorm, &a[a_offset], &c__1);

	    } else if (ipack >= 5) {

		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = kll + kuu + 1;
		    d__1 = 1. / onorm;
		    zdscal_(&i__2, &d__1, &a[j * a_dim1 + 1], &c__1);
		    i__2 = kll + kuu + 1;
		    zdscal_(&i__2, anorm, &a[j * a_dim1 + 1], &c__1);
/* L570: */
		}

	    }

	} else {

/*           Scale straightforwardly */

	    if (ipack <= 2) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    d__1 = *anorm / onorm;
		    zdscal_(m, &d__1, &a[j * a_dim1 + 1], &c__1);
/* L580: */
		}

	    } else if (ipack == 3 || ipack == 4) {

		i__1 = *n * (*n + 1) / 2;
		d__1 = *anorm / onorm;
		zdscal_(&i__1, &d__1, &a[a_offset], &c__1);

	    } else if (ipack >= 5) {

		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = kll + kuu + 1;
		    d__1 = *anorm / onorm;
		    zdscal_(&i__2, &d__1, &a[j * a_dim1 + 1], &c__1);
/* L590: */
		}
	    }

	}

    }

/*     End of ZLATMR */

    return 0;
} /* zlatmr_ */