#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; static doublecomplex c_b2 = {1.,0.}; static integer c__1 = 1; static integer c__0 = 0; static integer c__5 = 5; /* Subroutine */ int zlatme_(integer *n, char *dist, integer *iseed, doublecomplex *d__, integer *mode, doublereal *cond, doublecomplex * dmax__, char *ei, char *rsign, char *upper, char *sim, doublereal *ds, integer *modes, doublereal *conds, integer *kl, integer *ku, doublereal *anorm, doublecomplex *a, integer *lda, doublecomplex * work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; doublereal d__1, d__2; doublecomplex z__1, z__2; /* Builtin functions */ double z_abs(doublecomplex *); void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, ic, jc, ir, jcr; doublecomplex tau; logical bads; integer isim; doublereal temp; doublecomplex alpha; extern logical lsame_(char *, char *); integer iinfo; doublereal tempa[1]; integer icols; extern /* Subroutine */ int zgerc_(integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); integer idist; extern /* Subroutine */ int zscal_(integer *, doublecomplex *, doublecomplex *, integer *), zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); integer irows; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), dlatm1_(integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *, integer *), zlatm1_(integer *, doublereal *, integer *, integer *, integer *, doublecomplex *, integer *, integer *); doublereal ralpha; extern /* Subroutine */ int xerbla_(char *, integer *); extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zdscal_(integer *, doublereal *, doublecomplex *, integer *), zlarge_(integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *), zlarfg_( integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *), zlacgv_(integer *, doublecomplex *, integer *); extern /* Double Complex */ VOID zlarnd_(doublecomplex *, integer *, integer *); integer irsign; extern /* Subroutine */ int zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *); integer iupper; extern /* Subroutine */ int zlarnv_(integer *, integer *, integer *, doublecomplex *); doublecomplex xnorms; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZLATME generates random non-symmetric square matrices with */ /* specified eigenvalues for testing LAPACK programs. */ /* ZLATME operates by applying the following sequence of */ /* operations: */ /* 1. Set the diagonal to D, where D may be input or */ /* computed according to MODE, COND, DMAX, and RSIGN */ /* as described below. */ /* 2. If UPPER='T', the upper triangle of A is set to random values */ /* out of distribution DIST. */ /* 3. If SIM='T', A is multiplied on the left by a random matrix */ /* X, whose singular values are specified by DS, MODES, and */ /* CONDS, and on the right by X inverse. */ /* 4. If KL < N-1, the lower bandwidth is reduced to KL using */ /* Householder transformations. If KU < N-1, the upper */ /* bandwidth is reduced to KU. */ /* 5. If ANORM is not negative, the matrix is scaled to have */ /* maximum-element-norm ANORM. */ /* (Note: since the matrix cannot be reduced beyond Hessenberg form, */ /* no packing options are available.) */ /* Arguments */ /* ========= */ /* N - INTEGER */ /* The number of columns (or rows) of A. Not modified. */ /* DIST - CHARACTER*1 */ /* On entry, DIST specifies the type of distribution to be used */ /* to generate the random eigen-/singular values, and on the */ /* upper triangle (see UPPER). */ /* 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) */ /* 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) */ /* 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) */ /* 'D' => uniform on the complex disc |z| < 1. */ /* Not modified. */ /* ISEED - INTEGER array, dimension ( 4 ) */ /* On entry ISEED specifies the seed of the random number */ /* generator. They should lie between 0 and 4095 inclusive, */ /* and ISEED(4) should be odd. The random number generator */ /* uses a linear congruential sequence limited to small */ /* integers, and so should produce machine independent */ /* random numbers. The values of ISEED are changed on */ /* exit, and can be used in the next call to ZLATME */ /* to continue the same random number sequence. */ /* Changed on exit. */ /* D - COMPLEX*16 array, dimension ( N ) */ /* This array is used to specify the eigenvalues of A. If */ /* MODE=0, then D is assumed to contain the eigenvalues */ /* otherwise they will be computed according to MODE, COND, */ /* DMAX, and RSIGN and placed in D. */ /* Modified if MODE is nonzero. */ /* MODE - INTEGER */ /* On entry this describes how the eigenvalues are to */ /* be specified: */ /* MODE = 0 means use D as input */ /* MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */ /* MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */ /* MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */ /* MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */ /* MODE = 5 sets D to random numbers in the range */ /* ( 1/COND , 1 ) such that their logarithms */ /* are uniformly distributed. */ /* MODE = 6 set D to random numbers from same distribution */ /* as the rest of the matrix. */ /* MODE < 0 has the same meaning as ABS(MODE), except that */ /* the order of the elements of D is reversed. */ /* Thus if MODE is between 1 and 4, D has entries ranging */ /* from 1 to 1/COND, if between -1 and -4, D has entries */ /* ranging from 1/COND to 1, */ /* Not modified. */ /* COND - DOUBLE PRECISION */ /* On entry, this is used as described under MODE above. */ /* If used, it must be >= 1. Not modified. */ /* DMAX - COMPLEX*16 */ /* If MODE is neither -6, 0 nor 6, the contents of D, as */ /* computed according to MODE and COND, will be scaled by */ /* DMAX / max(abs(D(i))). Note that DMAX need not be */ /* positive or real: if DMAX is negative or complex (or zero), */ /* D will be scaled by a negative or complex number (or zero). */ /* If RSIGN='F' then the largest (absolute) eigenvalue will be */ /* equal to DMAX. */ /* Not modified. */ /* EI - CHARACTER*1 (ignored) */ /* Not modified. */ /* RSIGN - CHARACTER*1 */ /* If MODE is not 0, 6, or -6, and RSIGN='T', then the */ /* elements of D, as computed according to MODE and COND, will */ /* be multiplied by a random complex number from the unit */ /* circle |z| = 1. If RSIGN='F', they will not be. RSIGN may */ /* only have the values 'T' or 'F'. */ /* Not modified. */ /* UPPER - CHARACTER*1 */ /* If UPPER='T', then the elements of A above the diagonal */ /* will be set to random numbers out of DIST. If UPPER='F', */ /* they will not. UPPER may only have the values 'T' or 'F'. */ /* Not modified. */ /* SIM - CHARACTER*1 */ /* If SIM='T', then A will be operated on by a "similarity */ /* transform", i.e., multiplied on the left by a matrix X and */ /* on the right by X inverse. X = U S V, where U and V are */ /* random unitary matrices and S is a (diagonal) matrix of */ /* singular values specified by DS, MODES, and CONDS. If */ /* SIM='F', then A will not be transformed. */ /* Not modified. */ /* DS - DOUBLE PRECISION array, dimension ( N ) */ /* This array is used to specify the singular values of X, */ /* in the same way that D specifies the eigenvalues of A. */ /* If MODE=0, the DS contains the singular values, which */ /* may not be zero. */ /* Modified if MODE is nonzero. */ /* MODES - INTEGER */ /* CONDS - DOUBLE PRECISION */ /* Similar to MODE and COND, but for specifying the diagonal */ /* of S. MODES=-6 and +6 are not allowed (since they would */ /* result in randomly ill-conditioned eigenvalues.) */ /* KL - INTEGER */ /* This specifies the lower bandwidth of the matrix. KL=1 */ /* specifies upper Hessenberg form. If KL is at least N-1, */ /* then A will have full lower bandwidth. */ /* Not modified. */ /* KU - INTEGER */ /* This specifies the upper bandwidth of the matrix. KU=1 */ /* specifies lower Hessenberg form. If KU is at least N-1, */ /* then A will have full upper bandwidth; if KU and KL */ /* are both at least N-1, then A will be dense. Only one of */ /* KU and KL may be less than N-1. */ /* Not modified. */ /* ANORM - DOUBLE PRECISION */ /* If ANORM is not negative, then A will be scaled by a non- */ /* negative real number to make the maximum-element-norm of A */ /* to be ANORM. */ /* Not modified. */ /* A - COMPLEX*16 array, dimension ( LDA, N ) */ /* On exit A is the desired test matrix. */ /* Modified. */ /* LDA - INTEGER */ /* LDA specifies the first dimension of A as declared in the */ /* calling program. LDA must be at least M. */ /* Not modified. */ /* WORK - COMPLEX*16 array, dimension ( 3*N ) */ /* Workspace. */ /* Modified. */ /* INFO - INTEGER */ /* Error code. On exit, INFO will be set to one of the */ /* following values: */ /* 0 => normal return */ /* -1 => N negative */ /* -2 => DIST illegal string */ /* -5 => MODE not in range -6 to 6 */ /* -6 => COND less than 1.0, and MODE neither -6, 0 nor 6 */ /* -9 => RSIGN is not 'T' or 'F' */ /* -10 => UPPER is not 'T' or 'F' */ /* -11 => SIM is not 'T' or 'F' */ /* -12 => MODES=0 and DS has a zero singular value. */ /* -13 => MODES is not in the range -5 to 5. */ /* -14 => MODES is nonzero and CONDS is less than 1. */ /* -15 => KL is less than 1. */ /* -16 => KU is less than 1, or KL and KU are both less than */ /* N-1. */ /* -19 => LDA is less than M. */ /* 1 => Error return from ZLATM1 (computing D) */ /* 2 => Cannot scale to DMAX (max. eigenvalue is 0) */ /* 3 => Error return from DLATM1 (computing DS) */ /* 4 => Error return from ZLARGE */ /* 5 => Zero singular value from DLATM1. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* 1) Decode and Test the input parameters. */ /* Initialize flags & seed. */ /* Parameter adjustments */ --iseed; --d__; --ds; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --work; /* Function Body */ *info = 0; /* Quick return if possible */ if (*n == 0) { return 0; } /* Decode DIST */ if (lsame_(dist, "U")) { idist = 1; } else if (lsame_(dist, "S")) { idist = 2; } else if (lsame_(dist, "N")) { idist = 3; } else if (lsame_(dist, "D")) { idist = 4; } else { idist = -1; } /* Decode RSIGN */ if (lsame_(rsign, "T")) { irsign = 1; } else if (lsame_(rsign, "F")) { irsign = 0; } else { irsign = -1; } /* Decode UPPER */ if (lsame_(upper, "T")) { iupper = 1; } else if (lsame_(upper, "F")) { iupper = 0; } else { iupper = -1; } /* Decode SIM */ if (lsame_(sim, "T")) { isim = 1; } else if (lsame_(sim, "F")) { isim = 0; } else { isim = -1; } /* Check DS, if MODES=0 and ISIM=1 */ bads = FALSE_; if (*modes == 0 && isim == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (ds[j] == 0.) { bads = TRUE_; } /* L10: */ } } /* Set INFO if an error */ if (*n < 0) { *info = -1; } else if (idist == -1) { *info = -2; } else if (abs(*mode) > 6) { *info = -5; } else if (*mode != 0 && abs(*mode) != 6 && *cond < 1.) { *info = -6; } else if (irsign == -1) { *info = -9; } else if (iupper == -1) { *info = -10; } else if (isim == -1) { *info = -11; } else if (bads) { *info = -12; } else if (isim == 1 && abs(*modes) > 5) { *info = -13; } else if (isim == 1 && *modes != 0 && *conds < 1.) { *info = -14; } else if (*kl < 1) { *info = -15; } else if (*ku < 1 || *ku < *n - 1 && *kl < *n - 1) { *info = -16; } else if (*lda < max(1,*n)) { *info = -19; } if (*info != 0) { i__1 = -(*info); xerbla_("ZLATME", &i__1); return 0; } /* Initialize random number generator */ for (i__ = 1; i__ <= 4; ++i__) { iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096; /* L20: */ } if (iseed[4] % 2 != 1) { ++iseed[4]; } /* 2) Set up diagonal of A */ /* Compute D according to COND and MODE */ zlatm1_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], n, &iinfo); if (iinfo != 0) { *info = 1; return 0; } if (*mode != 0 && abs(*mode) != 6) { /* Scale by DMAX */ temp = z_abs(&d__[1]); i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { /* Computing MAX */ d__1 = temp, d__2 = z_abs(&d__[i__]); temp = max(d__1,d__2); /* L30: */ } if (temp > 0.) { z__1.r = dmax__->r / temp, z__1.i = dmax__->i / temp; alpha.r = z__1.r, alpha.i = z__1.i; } else { *info = 2; return 0; } zscal_(n, &alpha, &d__[1], &c__1); } zlaset_("Full", n, n, &c_b1, &c_b1, &a[a_offset], lda); i__1 = *lda + 1; zcopy_(n, &d__[1], &c__1, &a[a_offset], &i__1); /* 3) If UPPER='T', set upper triangle of A to random numbers. */ if (iupper != 0) { i__1 = *n; for (jc = 2; jc <= i__1; ++jc) { i__2 = jc - 1; zlarnv_(&idist, &iseed[1], &i__2, &a[jc * a_dim1 + 1]); /* L40: */ } } /* 4) If SIM='T', apply similarity transformation. */ /* -1 */ /* Transform is X A X , where X = U S V, thus */ /* it is U S V A V' (1/S) U' */ if (isim != 0) { /* Compute S (singular values of the eigenvector matrix) */ /* according to CONDS and MODES */ dlatm1_(modes, conds, &c__0, &c__0, &iseed[1], &ds[1], n, &iinfo); if (iinfo != 0) { *info = 3; return 0; } /* Multiply by V and V' */ zlarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo); if (iinfo != 0) { *info = 4; return 0; } /* Multiply by S and (1/S) */ i__1 = *n; for (j = 1; j <= i__1; ++j) { zdscal_(n, &ds[j], &a[j + a_dim1], lda); if (ds[j] != 0.) { d__1 = 1. / ds[j]; zdscal_(n, &d__1, &a[j * a_dim1 + 1], &c__1); } else { *info = 5; return 0; } /* L50: */ } /* Multiply by U and U' */ zlarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo); if (iinfo != 0) { *info = 4; return 0; } } /* 5) Reduce the bandwidth. */ if (*kl < *n - 1) { /* Reduce bandwidth -- kill column */ i__1 = *n - 1; for (jcr = *kl + 1; jcr <= i__1; ++jcr) { ic = jcr - *kl; irows = *n + 1 - jcr; icols = *n + *kl - jcr; zcopy_(&irows, &a[jcr + ic * a_dim1], &c__1, &work[1], &c__1); xnorms.r = work[1].r, xnorms.i = work[1].i; zlarfg_(&irows, &xnorms, &work[2], &c__1, &tau); d_cnjg(&z__1, &tau); tau.r = z__1.r, tau.i = z__1.i; work[1].r = 1., work[1].i = 0.; zlarnd_(&z__1, &c__5, &iseed[1]); alpha.r = z__1.r, alpha.i = z__1.i; zgemv_("C", &irows, &icols, &c_b2, &a[jcr + (ic + 1) * a_dim1], lda, &work[1], &c__1, &c_b1, &work[irows + 1], &c__1); z__1.r = -tau.r, z__1.i = -tau.i; zgerc_(&irows, &icols, &z__1, &work[1], &c__1, &work[irows + 1], & c__1, &a[jcr + (ic + 1) * a_dim1], lda); zgemv_("N", n, &irows, &c_b2, &a[jcr * a_dim1 + 1], lda, &work[1], &c__1, &c_b1, &work[irows + 1], &c__1); d_cnjg(&z__2, &tau); z__1.r = -z__2.r, z__1.i = -z__2.i; zgerc_(n, &irows, &z__1, &work[irows + 1], &c__1, &work[1], &c__1, &a[jcr * a_dim1 + 1], lda); i__2 = jcr + ic * a_dim1; a[i__2].r = xnorms.r, a[i__2].i = xnorms.i; i__2 = irows - 1; zlaset_("Full", &i__2, &c__1, &c_b1, &c_b1, &a[jcr + 1 + ic * a_dim1], lda); i__2 = icols + 1; zscal_(&i__2, &alpha, &a[jcr + ic * a_dim1], lda); d_cnjg(&z__1, &alpha); zscal_(n, &z__1, &a[jcr * a_dim1 + 1], &c__1); /* L60: */ } } else if (*ku < *n - 1) { /* Reduce upper bandwidth -- kill a row at a time. */ i__1 = *n - 1; for (jcr = *ku + 1; jcr <= i__1; ++jcr) { ir = jcr - *ku; irows = *n + *ku - jcr; icols = *n + 1 - jcr; zcopy_(&icols, &a[ir + jcr * a_dim1], lda, &work[1], &c__1); xnorms.r = work[1].r, xnorms.i = work[1].i; zlarfg_(&icols, &xnorms, &work[2], &c__1, &tau); d_cnjg(&z__1, &tau); tau.r = z__1.r, tau.i = z__1.i; work[1].r = 1., work[1].i = 0.; i__2 = icols - 1; zlacgv_(&i__2, &work[2], &c__1); zlarnd_(&z__1, &c__5, &iseed[1]); alpha.r = z__1.r, alpha.i = z__1.i; zgemv_("N", &irows, &icols, &c_b2, &a[ir + 1 + jcr * a_dim1], lda, &work[1], &c__1, &c_b1, &work[icols + 1], &c__1); z__1.r = -tau.r, z__1.i = -tau.i; zgerc_(&irows, &icols, &z__1, &work[icols + 1], &c__1, &work[1], & c__1, &a[ir + 1 + jcr * a_dim1], lda); zgemv_("C", &icols, n, &c_b2, &a[jcr + a_dim1], lda, &work[1], & c__1, &c_b1, &work[icols + 1], &c__1); d_cnjg(&z__2, &tau); z__1.r = -z__2.r, z__1.i = -z__2.i; zgerc_(&icols, n, &z__1, &work[1], &c__1, &work[icols + 1], &c__1, &a[jcr + a_dim1], lda); i__2 = ir + jcr * a_dim1; a[i__2].r = xnorms.r, a[i__2].i = xnorms.i; i__2 = icols - 1; zlaset_("Full", &c__1, &i__2, &c_b1, &c_b1, &a[ir + (jcr + 1) * a_dim1], lda); i__2 = irows + 1; zscal_(&i__2, &alpha, &a[ir + jcr * a_dim1], &c__1); d_cnjg(&z__1, &alpha); zscal_(n, &z__1, &a[jcr + a_dim1], lda); /* L70: */ } } /* Scale the matrix to have norm ANORM */ if (*anorm >= 0.) { temp = zlange_("M", n, n, &a[a_offset], lda, tempa); if (temp > 0.) { ralpha = *anorm / temp; i__1 = *n; for (j = 1; j <= i__1; ++j) { zdscal_(n, &ralpha, &a[j * a_dim1 + 1], &c__1); /* L80: */ } } } return 0; /* End of ZLATME */ } /* zlatme_ */