#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int ztpt05_(char *uplo, char *trans, char *diag, integer *n, integer *nrhs, doublecomplex *ap, doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx, doublecomplex *xact, integer *ldxact, doublereal *ferr, doublereal *berr, doublereal *reslts) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, xact_dim1, xact_offset, i__1, i__2, i__3, i__4, i__5; doublereal d__1, d__2, d__3, d__4; doublecomplex z__1, z__2; /* Builtin functions */ double d_imag(doublecomplex *); /* Local variables */ integer i__, j, k, jc, ifu; doublereal eps, tmp, diff, axbi; integer imax; doublereal unfl, ovfl; logical unit; extern logical lsame_(char *, char *); logical upper; doublereal xnorm; extern doublereal dlamch_(char *); doublereal errbnd; extern integer izamax_(integer *, doublecomplex *, integer *); logical notran; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZTPT05 tests the error bounds from iterative refinement for the */ /* computed solution to a system of equations A*X = B, where A is a */ /* triangular matrix in packed storage format. */ /* RESLTS(1) = test of the error bound */ /* = norm(X - XACT) / ( norm(X) * FERR ) */ /* A large value is returned if this ratio is not less than one. */ /* RESLTS(2) = residual from the iterative refinement routine */ /* = the maximum of BERR / ( (n+1)*EPS + (*) ), where */ /* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the matrix A is upper or lower triangular. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations. */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A'* X = B (Transpose) */ /* = 'C': A'* X = B (Conjugate transpose = Transpose) */ /* DIAG (input) CHARACTER*1 */ /* Specifies whether or not the matrix A is unit triangular. */ /* = 'N': Non-unit triangular */ /* = 'U': Unit triangular */ /* N (input) INTEGER */ /* The number of rows of the matrices X, B, and XACT, and the */ /* order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of columns of the matrices X, B, and XACT. */ /* NRHS >= 0. */ /* AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* The upper or lower triangular matrix A, packed columnwise in */ /* a linear array. The j-th column of A is stored in the array */ /* AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ /* If DIAG = 'U', the diagonal elements of A are not referenced */ /* and are assumed to be 1. */ /* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */ /* The right hand side vectors for the system of linear */ /* equations. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (input) COMPLEX*16 array, dimension (LDX,NRHS) */ /* The computed solution vectors. Each vector is stored as a */ /* column of the matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* XACT (input) COMPLEX*16 array, dimension (LDX,NRHS) */ /* The exact solution vectors. Each vector is stored as a */ /* column of the matrix XACT. */ /* LDXACT (input) INTEGER */ /* The leading dimension of the array XACT. LDXACT >= max(1,N). */ /* FERR (input) DOUBLE PRECISION array, dimension (NRHS) */ /* The estimated forward error bounds for each solution vector */ /* X. If XTRUE is the true solution, FERR bounds the magnitude */ /* of the largest entry in (X - XTRUE) divided by the magnitude */ /* of the largest entry in X. */ /* BERR (input) DOUBLE PRECISION array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector (i.e., the smallest relative change in any entry of A */ /* or B that makes X an exact solution). */ /* RESLTS (output) DOUBLE PRECISION array, dimension (2) */ /* The maximum over the NRHS solution vectors of the ratios: */ /* RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) */ /* RESLTS(2) = BERR / ( (n+1)*EPS + (*) ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 or NRHS = 0. */ /* Parameter adjustments */ --ap; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; xact_dim1 = *ldxact; xact_offset = 1 + xact_dim1; xact -= xact_offset; --ferr; --berr; --reslts; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { reslts[1] = 0.; reslts[2] = 0.; return 0; } eps = dlamch_("Epsilon"); unfl = dlamch_("Safe minimum"); ovfl = 1. / unfl; upper = lsame_(uplo, "U"); notran = lsame_(trans, "N"); unit = lsame_(diag, "U"); /* Test 1: Compute the maximum of */ /* norm(X - XACT) / ( norm(X) * FERR ) */ /* over all the vectors X and XACT using the infinity-norm. */ errbnd = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { imax = izamax_(n, &x[j * x_dim1 + 1], &c__1); /* Computing MAX */ i__2 = imax + j * x_dim1; d__3 = (d__1 = x[i__2].r, abs(d__1)) + (d__2 = d_imag(&x[imax + j * x_dim1]), abs(d__2)); xnorm = max(d__3,unfl); diff = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * x_dim1; i__4 = i__ + j * xact_dim1; z__2.r = x[i__3].r - xact[i__4].r, z__2.i = x[i__3].i - xact[i__4] .i; z__1.r = z__2.r, z__1.i = z__2.i; /* Computing MAX */ d__3 = diff, d__4 = (d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(& z__1), abs(d__2)); diff = max(d__3,d__4); /* L10: */ } if (xnorm > 1.) { goto L20; } else if (diff <= ovfl * xnorm) { goto L20; } else { errbnd = 1. / eps; goto L30; } L20: if (diff / xnorm <= ferr[j]) { /* Computing MAX */ d__1 = errbnd, d__2 = diff / xnorm / ferr[j]; errbnd = max(d__1,d__2); } else { errbnd = 1. / eps; } L30: ; } reslts[1] = errbnd; /* Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where */ /* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) */ ifu = 0; if (unit) { ifu = 1; } i__1 = *nrhs; for (k = 1; k <= i__1; ++k) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + k * b_dim1; tmp = (d__1 = b[i__3].r, abs(d__1)) + (d__2 = d_imag(&b[i__ + k * b_dim1]), abs(d__2)); if (upper) { jc = (i__ - 1) * i__ / 2; if (! notran) { i__3 = i__ - ifu; for (j = 1; j <= i__3; ++j) { i__4 = jc + j; i__5 = j + k * x_dim1; tmp += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&ap[jc + j]), abs(d__2))) * ((d__3 = x[ i__5].r, abs(d__3)) + (d__4 = d_imag(&x[j + k * x_dim1]), abs(d__4))); /* L40: */ } if (unit) { i__3 = i__ + k * x_dim1; tmp += (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag( &x[i__ + k * x_dim1]), abs(d__2)); } } else { jc += i__; if (unit) { i__3 = i__ + k * x_dim1; tmp += (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag( &x[i__ + k * x_dim1]), abs(d__2)); jc += i__; } i__3 = *n; for (j = i__ + ifu; j <= i__3; ++j) { i__4 = jc; i__5 = j + k * x_dim1; tmp += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&ap[jc]), abs(d__2))) * ((d__3 = x[ i__5].r, abs(d__3)) + (d__4 = d_imag(&x[j + k * x_dim1]), abs(d__4))); jc += j; /* L50: */ } } } else { if (notran) { jc = i__; i__3 = i__ - ifu; for (j = 1; j <= i__3; ++j) { i__4 = jc; i__5 = j + k * x_dim1; tmp += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&ap[jc]), abs(d__2))) * ((d__3 = x[ i__5].r, abs(d__3)) + (d__4 = d_imag(&x[j + k * x_dim1]), abs(d__4))); jc = jc + *n - j; /* L60: */ } if (unit) { i__3 = i__ + k * x_dim1; tmp += (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag( &x[i__ + k * x_dim1]), abs(d__2)); } } else { jc = (i__ - 1) * (*n - i__) + i__ * (i__ + 1) / 2; if (unit) { i__3 = i__ + k * x_dim1; tmp += (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag( &x[i__ + k * x_dim1]), abs(d__2)); } i__3 = *n; for (j = i__ + ifu; j <= i__3; ++j) { i__4 = jc + j - i__; i__5 = j + k * x_dim1; tmp += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&ap[jc + j - i__]), abs(d__2))) * (( d__3 = x[i__5].r, abs(d__3)) + (d__4 = d_imag( &x[j + k * x_dim1]), abs(d__4))); /* L70: */ } } } if (i__ == 1) { axbi = tmp; } else { axbi = min(axbi,tmp); } /* L80: */ } /* Computing MAX */ d__1 = axbi, d__2 = (*n + 1) * unfl; tmp = berr[k] / ((*n + 1) * eps + (*n + 1) * unfl / max(d__1,d__2)); if (k == 1) { reslts[2] = tmp; } else { reslts[2] = max(reslts[2],tmp); } /* L90: */ } return 0; /* End of ZTPT05 */ } /* ztpt05_ */