#include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static doublecomplex c_b1 = {-1e10,-1e10}; static doublecomplex c_b10 = {0.,0.}; static doublecomplex c_b15 = {-1.,0.}; static doublecomplex c_b16 = {1.,0.}; static doublereal c_b24 = -1.; static doublereal c_b25 = 1.; /* Subroutine */ int zlqt01_(integer *m, integer *n, doublecomplex *a, doublecomplex *af, doublecomplex *q, doublecomplex *l, integer *lda, doublecomplex *tau, doublecomplex *work, integer *lwork, doublereal * rwork, doublereal *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, q_offset, i__1; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ doublereal eps; integer info; doublereal resid, anorm; integer minmn; extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zherk_(char *, char *, integer *, integer *, doublereal *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *); extern doublereal dlamch_(char *), zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zgelqf_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer * ), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *); extern doublereal zlansy_(char *, char *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zunglq_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZLQT01 tests ZGELQF, which computes the LQ factorization of an m-by-n */ /* matrix A, and partially tests ZUNGLQ which forms the n-by-n */ /* orthogonal matrix Q. */ /* ZLQT01 compares L with A*Q', and checks that Q is orthogonal. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input) COMPLEX*16 array, dimension (LDA,N) */ /* The m-by-n matrix A. */ /* AF (output) COMPLEX*16 array, dimension (LDA,N) */ /* Details of the LQ factorization of A, as returned by ZGELQF. */ /* See ZGELQF for further details. */ /* Q (output) COMPLEX*16 array, dimension (LDA,N) */ /* The n-by-n orthogonal matrix Q. */ /* L (workspace) COMPLEX*16 array, dimension (LDA,max(M,N)) */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays A, AF, Q and L. */ /* LDA >= max(M,N). */ /* TAU (output) COMPLEX*16 array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors, as returned */ /* by ZGELQF. */ /* WORK (workspace) COMPLEX*16 array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (max(M,N)) */ /* RESULT (output) DOUBLE PRECISION array, dimension (2) */ /* The test ratios: */ /* RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) */ /* RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ l_dim1 = *lda; l_offset = 1 + l_dim1; l -= l_offset; q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; --rwork; --result; /* Function Body */ minmn = min(*m,*n); eps = dlamch_("Epsilon"); /* Copy the matrix A to the array AF. */ zlacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda); /* Factorize the matrix A in the array AF. */ s_copy(srnamc_1.srnamt, "ZGELQF", (ftnlen)6, (ftnlen)6); zgelqf_(m, n, &af[af_offset], lda, &tau[1], &work[1], lwork, &info); /* Copy details of Q */ zlaset_("Full", n, n, &c_b1, &c_b1, &q[q_offset], lda); if (*n > 1) { i__1 = *n - 1; zlacpy_("Upper", m, &i__1, &af[(af_dim1 << 1) + 1], lda, &q[(q_dim1 << 1) + 1], lda); } /* Generate the n-by-n matrix Q */ s_copy(srnamc_1.srnamt, "ZUNGLQ", (ftnlen)6, (ftnlen)6); zunglq_(n, n, &minmn, &q[q_offset], lda, &tau[1], &work[1], lwork, &info); /* Copy L */ zlaset_("Full", m, n, &c_b10, &c_b10, &l[l_offset], lda); zlacpy_("Lower", m, n, &af[af_offset], lda, &l[l_offset], lda); /* Compute L - A*Q' */ zgemm_("No transpose", "Conjugate transpose", m, n, n, &c_b15, &a[ a_offset], lda, &q[q_offset], lda, &c_b16, &l[l_offset], lda); /* Compute norm( L - Q'*A ) / ( N * norm(A) * EPS ) . */ anorm = zlange_("1", m, n, &a[a_offset], lda, &rwork[1]); resid = zlange_("1", m, n, &l[l_offset], lda, &rwork[1]); if (anorm > 0.) { result[1] = resid / (doublereal) max(1,*n) / anorm / eps; } else { result[1] = 0.; } /* Compute I - Q*Q' */ zlaset_("Full", n, n, &c_b10, &c_b16, &l[l_offset], lda); zherk_("Upper", "No transpose", n, n, &c_b24, &q[q_offset], lda, &c_b25, & l[l_offset], lda); /* Compute norm( I - Q*Q' ) / ( N * EPS ) . */ resid = zlansy_("1", "Upper", n, &l[l_offset], lda, &rwork[1]); result[2] = resid / (doublereal) max(1,*n) / eps; return 0; /* End of ZLQT01 */ } /* zlqt01_ */