#include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; static integer c__0 = 0; static integer c_n1 = -1; static doublecomplex c_b47 = {0.,0.}; static doublecomplex c_b48 = {1.,0.}; /* Subroutine */ int zdrvpb_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *asav, doublecomplex *b, doublecomplex *bsav, doublecomplex *x, doublecomplex *xact, doublereal *s, doublecomplex *work, doublereal * rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char facts[1*3] = "F" "N" "E"; static char equeds[1*2] = "N" "Y"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5" ",\002, KD =\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)" "=\002,g12.5)"; static char fmt_9997[] = "(1x,a6,\002( '\002,a1,\002', '\002,a1,\002'," " \002,i5,\002, \002,i5,\002, ... ), EQUED='\002,a1,\002', type" " \002,i1,\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9998[] = "(1x,a6,\002( '\002,a1,\002', '\002,a1,\002'," " \002,i5,\002, \002,i5,\002, ... ), type \002,i1,\002, test(\002" ",i1,\002)=\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5, i__6, i__7[2]; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ integer i__, k, n, i1, i2, k1, kd, nb, in, kl, iw, ku, nt, lda, ikd, nkd, ldab; char fact[1]; integer ioff, mode, koff; doublereal amax; char path[3]; integer imat, info; char dist[1], uplo[1], type__[1]; integer nrun, ifact, nfail, iseed[4], nfact; extern doublereal dget06_(doublereal *, doublereal *); integer kdval[4]; extern logical lsame_(char *, char *); char equed[1]; integer nbmin; doublereal rcond, roldc, scond; integer nimat; doublereal anorm; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ); logical equil; extern /* Subroutine */ int zpbt01_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zpbt02_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ), zpbt05_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); integer iuplo, izero, nerrs; logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zpbsv_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *); char xtype[1]; extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), aladhd_(integer *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); logical prefac; doublereal rcondc; logical nofact; char packit[1]; integer iequed; extern doublereal zlanhb_(char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *), zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zlaqhb_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, char *), alasvm_(char *, integer *, integer *, integer *, integer *); doublereal cndnum; extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *, integer *); doublereal ainvnm; extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex * , integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zpbequ_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, integer *), zpbtrf_(char *, integer *, integer *, doublecomplex *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); doublereal result[6]; extern /* Subroutine */ int zpbtrs_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zpbsvx_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, char *, doublereal *, doublecomplex *, integer *, doublecomplex * , integer *, doublereal *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zerrvx_(char *, integer *); /* Fortran I/O blocks */ static cilist io___57 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___60 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___61 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZDRVPB tests the driver routines ZPBSV and -SVX. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AFAC (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* ASAV (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* BSAV (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* S (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (NMAX*max(3,NRHS)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --rwork; --work; --s; --xact; --x; --bsav; --b; --asav; --afac; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "PB", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrvx_(path, nout); } infoc_1.infot = 0; kdval[0] = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; /* Set limits on the number of loop iterations. */ /* Computing MAX */ i__2 = 1, i__3 = min(n,4); nkd = max(i__2,i__3); nimat = 8; if (n == 0) { nimat = 1; } kdval[1] = n + (n + 1) / 4; kdval[2] = (n * 3 - 1) / 4; kdval[3] = (n + 1) / 4; i__2 = nkd; for (ikd = 1; ikd <= i__2; ++ikd) { /* Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order */ /* makes it easier to skip redundant values for small values */ /* of N. */ kd = kdval[ikd - 1]; ldab = kd + 1; /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { koff = 1; if (iuplo == 1) { *(unsigned char *)uplo = 'U'; *(unsigned char *)packit = 'Q'; /* Computing MAX */ i__3 = 1, i__4 = kd + 2 - n; koff = max(i__3,i__4); } else { *(unsigned char *)uplo = 'L'; *(unsigned char *)packit = 'B'; } i__3 = nimat; for (imat = 1; imat <= i__3; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L80; } /* Skip types 2, 3, or 4 if the matrix size is too small. */ zerot = imat >= 2 && imat <= 4; if (zerot && n < imat - 1) { goto L80; } if (! zerot || ! dotype[1]) { /* Set up parameters with ZLATB4 and generate a test */ /* matrix with ZLATMS. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen) 6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cndnum, &anorm, &kd, &kd, packit, &a[koff], &ldab, &work[1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, & n, &c_n1, &c_n1, &c_n1, &imat, &nfail, & nerrs, nout); goto L80; } } else if (izero > 0) { /* Use the same matrix for types 3 and 4 as for type */ /* 2 by copying back the zeroed out column, */ iw = (lda << 1) + 1; if (iuplo == 1) { ioff = (izero - 1) * ldab + kd + 1; i__4 = izero - i1; zcopy_(&i__4, &work[iw], &c__1, &a[ioff - izero + i1], &c__1); iw = iw + izero - i1; i__4 = i2 - izero + 1; /* Computing MAX */ i__6 = ldab - 1; i__5 = max(i__6,1); zcopy_(&i__4, &work[iw], &c__1, &a[ioff], &i__5); } else { ioff = (i1 - 1) * ldab + 1; i__4 = izero - i1; /* Computing MAX */ i__6 = ldab - 1; i__5 = max(i__6,1); zcopy_(&i__4, &work[iw], &c__1, &a[ioff + izero - i1], &i__5); ioff = (izero - 1) * ldab + 1; iw = iw + izero - i1; i__4 = i2 - izero + 1; zcopy_(&i__4, &work[iw], &c__1, &a[ioff], &c__1); } } /* For types 2-4, zero one row and column of the matrix */ /* to test that INFO is returned correctly. */ izero = 0; if (zerot) { if (imat == 2) { izero = 1; } else if (imat == 3) { izero = n; } else { izero = n / 2 + 1; } /* Save the zeroed out row and column in WORK(*,3) */ iw = lda << 1; /* Computing MIN */ i__5 = (kd << 1) + 1; i__4 = min(i__5,n); for (i__ = 1; i__ <= i__4; ++i__) { i__5 = iw + i__; work[i__5].r = 0., work[i__5].i = 0.; /* L20: */ } ++iw; /* Computing MAX */ i__4 = izero - kd; i1 = max(i__4,1); /* Computing MIN */ i__4 = izero + kd; i2 = min(i__4,n); if (iuplo == 1) { ioff = (izero - 1) * ldab + kd + 1; i__4 = izero - i1; zswap_(&i__4, &a[ioff - izero + i1], &c__1, &work[ iw], &c__1); iw = iw + izero - i1; i__4 = i2 - izero + 1; /* Computing MAX */ i__6 = ldab - 1; i__5 = max(i__6,1); zswap_(&i__4, &a[ioff], &i__5, &work[iw], &c__1); } else { ioff = (i1 - 1) * ldab + 1; i__4 = izero - i1; /* Computing MAX */ i__6 = ldab - 1; i__5 = max(i__6,1); zswap_(&i__4, &a[ioff + izero - i1], &i__5, &work[ iw], &c__1); ioff = (izero - 1) * ldab + 1; iw = iw + izero - i1; i__4 = i2 - izero + 1; zswap_(&i__4, &a[ioff], &c__1, &work[iw], &c__1); } } /* Set the imaginary part of the diagonals. */ if (iuplo == 1) { zlaipd_(&n, &a[kd + 1], &ldab, &c__0); } else { zlaipd_(&n, &a[1], &ldab, &c__0); } /* Save a copy of the matrix A in ASAV. */ i__4 = kd + 1; zlacpy_("Full", &i__4, &n, &a[1], &ldab, &asav[1], &ldab); for (iequed = 1; iequed <= 2; ++iequed) { *(unsigned char *)equed = *(unsigned char *)&equeds[ iequed - 1]; if (iequed == 1) { nfact = 3; } else { nfact = 1; } i__4 = nfact; for (ifact = 1; ifact <= i__4; ++ifact) { *(unsigned char *)fact = *(unsigned char *)&facts[ ifact - 1]; prefac = lsame_(fact, "F"); nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (zerot) { if (prefac) { goto L60; } rcondc = 0.; } else if (! lsame_(fact, "N")) { /* Compute the condition number for comparison */ /* with the value returned by ZPBSVX (FACT = */ /* 'N' reuses the condition number from the */ /* previous iteration with FACT = 'F'). */ i__5 = kd + 1; zlacpy_("Full", &i__5, &n, &asav[1], &ldab, & afac[1], &ldab); if (equil || iequed > 1) { /* Compute row and column scale factors to */ /* equilibrate the matrix A. */ zpbequ_(uplo, &n, &kd, &afac[1], &ldab, & s[1], &scond, &amax, &info); if (info == 0 && n > 0) { if (iequed > 1) { scond = 0.; } /* Equilibrate the matrix. */ zlaqhb_(uplo, &n, &kd, &afac[1], & ldab, &s[1], &scond, &amax, equed); } } /* Save the condition number of the */ /* non-equilibrated system for use in ZGET04. */ if (equil) { roldc = rcondc; } /* Compute the 1-norm of A. */ anorm = zlanhb_("1", uplo, &n, &kd, &afac[1], &ldab, &rwork[1]); /* Factor the matrix A. */ zpbtrf_(uplo, &n, &kd, &afac[1], &ldab, &info); /* Form the inverse of A. */ zlaset_("Full", &n, &n, &c_b47, &c_b48, &a[1], &lda); s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)6, ( ftnlen)6); zpbtrs_(uplo, &n, &kd, &n, &afac[1], &ldab, & a[1], &lda, &info); /* Compute the 1-norm condition number of A. */ ainvnm = zlange_("1", &n, &n, &a[1], &lda, & rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } } /* Restore the matrix A. */ i__5 = kd + 1; zlacpy_("Full", &i__5, &n, &asav[1], &ldab, &a[1], &ldab); /* Form an exact solution and set the right hand */ /* side. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, ( ftnlen)6); zlarhs_(path, xtype, uplo, " ", &n, &n, &kd, &kd, nrhs, &a[1], &ldab, &xact[1], &lda, &b[1], &lda, iseed, &info); *(unsigned char *)xtype = 'C'; zlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], & lda); if (nofact) { /* --- Test ZPBSV --- */ /* Compute the L*L' or U'*U factorization of the */ /* matrix and solve the system. */ i__5 = kd + 1; zlacpy_("Full", &i__5, &n, &a[1], &ldab, & afac[1], &ldab); zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZPBSV ", (ftnlen)6, ( ftnlen)6); zpbsv_(uplo, &n, &kd, nrhs, &afac[1], &ldab, & x[1], &lda, &info); /* Check error code from ZPBSV . */ if (info != izero) { alaerh_(path, "ZPBSV ", &info, &izero, uplo, &n, &n, &kd, &kd, nrhs, & imat, &nfail, &nerrs, nout); goto L40; } else if (info != 0) { goto L40; } /* Reconstruct matrix from factors and compute */ /* residual. */ zpbt01_(uplo, &n, &kd, &a[1], &ldab, &afac[1], &ldab, &rwork[1], result); /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[ 1], &lda); zpbt02_(uplo, &n, &kd, nrhs, &a[1], &ldab, &x[ 1], &lda, &work[1], &lda, &rwork[1], & result[1]); /* Check solution from generated exact solution. */ zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); nt = 3; /* Print information about the tests that did */ /* not pass the threshold. */ i__5 = nt; for (k = 1; k <= i__5; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___57.ciunit = *nout; s_wsfe(&io___57); do_fio(&c__1, "ZPBSV ", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kd, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L30: */ } nrun += nt; L40: ; } /* --- Test ZPBSVX --- */ if (! prefac) { i__5 = kd + 1; zlaset_("Full", &i__5, &n, &c_b47, &c_b47, & afac[1], &ldab); } zlaset_("Full", &n, nrhs, &c_b47, &c_b47, &x[1], & lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT='F' and */ /* EQUED='Y' */ zlaqhb_(uplo, &n, &kd, &a[1], &ldab, &s[1], & scond, &amax, equed); } /* Solve the system and compute the condition */ /* number and error bounds using ZPBSVX. */ s_copy(srnamc_1.srnamt, "ZPBSVX", (ftnlen)6, ( ftnlen)6); zpbsvx_(fact, uplo, &n, &kd, nrhs, &a[1], &ldab, & afac[1], &ldab, equed, &s[1], &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &rwork[* nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 1], &info); /* Check the error code from ZPBSVX. */ if (info != izero) { /* Writing concatenation */ i__7[0] = 1, a__1[0] = fact; i__7[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__7, &c__2, (ftnlen)2); alaerh_(path, "ZPBSVX", &info, &izero, ch__1, &n, &n, &kd, &kd, nrhs, &imat, &nfail, &nerrs, nout); goto L60; } if (info == 0) { if (! prefac) { /* Reconstruct matrix from factors and */ /* compute residual. */ zpbt01_(uplo, &n, &kd, &a[1], &ldab, & afac[1], &ldab, &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &bsav[1], &lda, & work[1], &lda); zpbt02_(uplo, &n, &kd, nrhs, &asav[1], &ldab, &x[1], &lda, &work[1], &lda, &rwork[(* nrhs << 1) + 1], &result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { zget04_(&n, nrhs, &x[1], &lda, &xact[1], & lda, &rcondc, &result[2]); } else { zget04_(&n, nrhs, &x[1], &lda, &xact[1], & lda, &roldc, &result[2]); } /* Check the error bounds from iterative */ /* refinement. */ zpbt05_(uplo, &n, &kd, nrhs, &asav[1], &ldab, &b[1], &lda, &x[1], &lda, &xact[1], & lda, &rwork[1], &rwork[*nrhs + 1], & result[3]); } else { k1 = 6; } /* Compare RCOND from ZPBSVX with the computed */ /* value in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not */ /* pass the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___60.ciunit = *nout; s_wsfe(&io___60); do_fio(&c__1, "ZPBSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kd, (ftnlen) sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(doublereal)); e_wsfe(); } else { io___61.ciunit = *nout; s_wsfe(&io___61); do_fio(&c__1, "ZPBSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kd, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(doublereal)); e_wsfe(); } ++nfail; } /* L50: */ } nrun = nrun + 7 - k1; L60: ; } /* L70: */ } L80: ; } /* L90: */ } /* L100: */ } /* L110: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZDRVPB */ } /* zdrvpb_ */