#include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { integer infot, iounit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static doublecomplex c_b10 = {0.,0.}; static doublereal c_b15 = 1.; static integer c__1 = 1; /* Subroutine */ int zchktz_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, doublereal *thresh, logical *tsterr, doublecomplex *a, doublecomplex *copya, doublereal *s, doublereal * copys, doublecomplex *tau, doublecomplex *work, doublereal *rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; /* Format strings */ static char fmt_9999[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, type" " \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4; doublereal d__1; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, k, m, n, im, in, lda; doublereal eps; integer mode, info; char path[3]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer nfail, iseed[4], imode, mnmin, nerrs, lwork; extern doublereal zqrt12_(integer *, integer *, doublecomplex *, integer * , doublereal *, doublecomplex *, integer *, doublereal *), zrzt01_(integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zrzt02_( integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), ztzt01_(integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), ztzt02_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); extern /* Subroutine */ int zgeqr2_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); extern doublereal dlamch_(char *); extern /* Subroutine */ int dlaord_(char *, integer *, doublereal *, integer *), alasum_(char *, integer *, integer *, integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatms_( integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); doublereal result[6]; extern /* Subroutine */ int zerrtz_(char *, integer *), ztzrqf_( integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), ztzrzf_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *) ; /* Fortran I/O blocks */ static cilist io___21 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCHKTZ tests ZTZRQF and ZTZRZF. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NM (input) INTEGER */ /* The number of values of M contained in the vector MVAL. */ /* MVAL (input) INTEGER array, dimension (NM) */ /* The values of the matrix row dimension M. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* A (workspace) COMPLEX*16 array, dimension (MMAX*NMAX) */ /* where MMAX is the maximum value of M in MVAL and NMAX is the */ /* maximum value of N in NVAL. */ /* COPYA (workspace) COMPLEX*16 array, dimension (MMAX*NMAX) */ /* S (workspace) DOUBLE PRECISION array, dimension */ /* (min(MMAX,NMAX)) */ /* COPYS (workspace) DOUBLE PRECISION array, dimension */ /* (min(MMAX,NMAX)) */ /* TAU (workspace) COMPLEX*16 array, dimension (MMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (MMAX*NMAX + 4*NMAX + MMAX) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (2*NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --rwork; --work; --tau; --copys; --s; --copya; --a; --nval; --mval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "TZ", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } eps = dlamch_("Epsilon"); /* Test the error exits */ if (*tsterr) { zerrtz_(path, nout); } infoc_1.infot = 0; i__1 = *nm; for (im = 1; im <= i__1; ++im) { /* Do for each value of M in MVAL. */ m = mval[im]; lda = max(1,m); i__2 = *nn; for (in = 1; in <= i__2; ++in) { /* Do for each value of N in NVAL for which M .LE. N. */ n = nval[in]; mnmin = min(m,n); /* Computing MAX */ i__3 = 1, i__4 = n * n + (m << 2) + n; lwork = max(i__3,i__4); if (m <= n) { for (imode = 1; imode <= 3; ++imode) { /* Do for each type of singular value distribution. */ /* 0: zero matrix */ /* 1: one small singular value */ /* 2: exponential distribution */ mode = imode - 1; /* Test ZTZRQF */ /* Generate test matrix of size m by n using */ /* singular value distribution indicated by `mode'. */ if (mode == 0) { zlaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda); i__3 = mnmin; for (i__ = 1; i__ <= i__3; ++i__) { copys[i__] = 0.; /* L20: */ } } else { d__1 = 1. / eps; zlatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", & copys[1], &imode, &d__1, &c_b15, &m, &n, "No packing", &a[1], &lda, &work[1], &info); zgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 1], &info); i__3 = m - 1; zlaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], & lda); dlaord_("Decreasing", &mnmin, ©s[1], &c__1); } /* Save A and its singular values */ zlacpy_("All", &m, &n, &a[1], &lda, ©a[1], &lda); /* Call ZTZRQF to reduce the upper trapezoidal matrix to */ /* upper triangular form. */ s_copy(srnamc_1.srnamt, "ZTZRQF", (ftnlen)6, (ftnlen)6); ztzrqf_(&m, &n, &a[1], &lda, &tau[1], &info); /* Compute norm(svd(a) - svd(r)) */ result[0] = zqrt12_(&m, &m, &a[1], &lda, ©s[1], &work[ 1], &lwork, &rwork[1]); /* Compute norm( A - R*Q ) */ result[1] = ztzt01_(&m, &n, ©a[1], &a[1], &lda, &tau[ 1], &work[1], &lwork); /* Compute norm(Q'*Q - I). */ result[2] = ztzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1] , &lwork); /* Test ZTZRZF */ /* Generate test matrix of size m by n using */ /* singular value distribution indicated by `mode'. */ if (mode == 0) { zlaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda); i__3 = mnmin; for (i__ = 1; i__ <= i__3; ++i__) { copys[i__] = 0.; /* L30: */ } } else { d__1 = 1. / eps; zlatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", & copys[1], &imode, &d__1, &c_b15, &m, &n, "No packing", &a[1], &lda, &work[1], &info); zgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 1], &info); i__3 = m - 1; zlaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], & lda); dlaord_("Decreasing", &mnmin, ©s[1], &c__1); } /* Save A and its singular values */ zlacpy_("All", &m, &n, &a[1], &lda, ©a[1], &lda); /* Call ZTZRZF to reduce the upper trapezoidal matrix to */ /* upper triangular form. */ s_copy(srnamc_1.srnamt, "ZTZRZF", (ftnlen)6, (ftnlen)6); ztzrzf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lwork, & info); /* Compute norm(svd(a) - svd(r)) */ result[3] = zqrt12_(&m, &m, &a[1], &lda, ©s[1], &work[ 1], &lwork, &rwork[1]); /* Compute norm( A - R*Q ) */ result[4] = zrzt01_(&m, &n, ©a[1], &a[1], &lda, &tau[ 1], &work[1], &lwork); /* Compute norm(Q'*Q - I). */ result[5] = zrzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1] , &lwork); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___21.ciunit = *nout; s_wsfe(&io___21); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imode, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L40: */ } nrun += 6; /* L50: */ } } /* L60: */ } /* L70: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); /* End if ZCHKTZ */ return 0; } /* zchktz_ */