#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int stpt03_(char *uplo, char *trans, char *diag, integer *n, 
	integer *nrhs, real *ap, real *scale, real *cnorm, real *tscal, real *
	x, integer *ldx, real *b, integer *ldb, real *work, real *resid)
{
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1;
    real r__1, r__2, r__3;

    /* Local variables */
    integer j, jj, ix;
    real eps, err;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    real xscal;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    real tnorm, xnorm;
    extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, 
	    real *, integer *), stpmv_(char *, char *, char *, integer *, 
	    real *, real *, integer *), slabad_(real *
, real *);
    extern doublereal slamch_(char *);
    real bignum;
    extern integer isamax_(integer *, real *, integer *);
    real smlnum;


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  STPT03 computes the residual for the solution to a scaled triangular */
/*  system of equations A*x = s*b  or  A'*x = s*b  when the triangular */
/*  matrix A is stored in packed format.  Here A' is the transpose of A, */
/*  s is a scalar, and x and b are N by NRHS matrices.  The test ratio is */
/*  the maximum over the number of right hand sides of */
/*     norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */
/*  where op(A) denotes A or A' and EPS is the machine epsilon. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the matrix A is upper or lower triangular. */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies the operation applied to A. */
/*          = 'N':  A *x = s*b  (No transpose) */
/*          = 'T':  A'*x = s*b  (Transpose) */
/*          = 'C':  A'*x = s*b  (Conjugate transpose = Transpose) */

/*  DIAG    (input) CHARACTER*1 */
/*          Specifies whether or not the matrix A is unit triangular. */
/*          = 'N':  Non-unit triangular */
/*          = 'U':  Unit triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices X and B.  NRHS >= 0. */

/*  AP      (input) REAL array, dimension (N*(N+1)/2) */
/*          The upper or lower triangular matrix A, packed columnwise in */
/*          a linear array.  The j-th column of A is stored in the array */
/*          AP as follows: */
/*          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', */
/*             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */

/*  SCALE   (input) REAL */
/*          The scaling factor s used in solving the triangular system. */

/*  CNORM   (input) REAL array, dimension (N) */
/*          The 1-norms of the columns of A, not counting the diagonal. */

/*  TSCAL   (input) REAL */
/*          The scaling factor used in computing the 1-norms in CNORM. */
/*          CNORM actually contains the column norms of TSCAL*A. */

/*  X       (input) REAL array, dimension (LDX,NRHS) */
/*          The computed solution vectors for the system of linear */
/*          equations. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  B       (input) REAL array, dimension (LDB,NRHS) */
/*          The right hand side vectors for the system of linear */
/*          equations. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  WORK    (workspace) REAL array, dimension (N) */

/*  RESID   (output) REAL */
/*          The maximum over the number of right hand sides of */
/*          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick exit if N = 0. */

    /* Parameter adjustments */
    --ap;
    --cnorm;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --work;

    /* Function Body */
    if (*n <= 0 || *nrhs <= 0) {
	*resid = 0.f;
	return 0;
    }
    eps = slamch_("Epsilon");
    smlnum = slamch_("Safe minimum");
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);

/*     Compute the norm of the triangular matrix A using the column */
/*     norms already computed by SLATPS. */

    tnorm = 0.f;
    if (lsame_(diag, "N")) {
	if (lsame_(uplo, "U")) {
	    jj = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		r__2 = tnorm, r__3 = *tscal * (r__1 = ap[jj], dabs(r__1)) + 
			cnorm[j];
		tnorm = dmax(r__2,r__3);
		jj = jj + j + 1;
/* L10: */
	    }
	} else {
	    jj = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		r__2 = tnorm, r__3 = *tscal * (r__1 = ap[jj], dabs(r__1)) + 
			cnorm[j];
		tnorm = dmax(r__2,r__3);
		jj = jj + *n - j + 1;
/* L20: */
	    }
	}
    } else {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    r__1 = tnorm, r__2 = *tscal + cnorm[j];
	    tnorm = dmax(r__1,r__2);
/* L30: */
	}
    }

/*     Compute the maximum over the number of right hand sides of */
/*        norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */

    *resid = 0.f;
    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	scopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1);
	ix = isamax_(n, &work[1], &c__1);
/* Computing MAX */
	r__2 = 1.f, r__3 = (r__1 = x[ix + j * x_dim1], dabs(r__1));
	xnorm = dmax(r__2,r__3);
	xscal = 1.f / xnorm / (real) (*n);
	sscal_(n, &xscal, &work[1], &c__1);
	stpmv_(uplo, trans, diag, n, &ap[1], &work[1], &c__1);
	r__1 = -(*scale) * xscal;
	saxpy_(n, &r__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
	ix = isamax_(n, &work[1], &c__1);
	err = *tscal * (r__1 = work[ix], dabs(r__1));
	ix = isamax_(n, &x[j * x_dim1 + 1], &c__1);
	xnorm = (r__1 = x[ix + j * x_dim1], dabs(r__1));
	if (err * smlnum <= xnorm) {
	    if (xnorm > 0.f) {
		err /= xnorm;
	    }
	} else {
	    if (err > 0.f) {
		err = 1.f / eps;
	    }
	}
	if (err * smlnum <= tnorm) {
	    if (tnorm > 0.f) {
		err /= tnorm;
	    }
	} else {
	    if (err > 0.f) {
		err = 1.f / eps;
	    }
	}
	*resid = dmax(*resid,err);
/* L40: */
    }

    return 0;

/*     End of STPT03 */

} /* stpt03_ */