#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__10 = 10; static integer c__1 = 1; static real c_b14 = -1.f; doublereal sqpt01_(integer *m, integer *n, integer *k, real *a, real *af, integer *lda, real *tau, integer *jpvt, real *work, integer *lwork) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2; real ret_val; /* Local variables */ integer i__, j, info; real norma; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); real rwork[1]; extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, real *, integer *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int xerbla_(char *, integer *), sormqr_( char *, char *, integer *, integer *, integer *, real *, integer * , real *, real *, integer *, real *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SQPT01 tests the QR-factorization with pivoting of a matrix A. The */ /* array AF contains the (possibly partial) QR-factorization of A, where */ /* the upper triangle of AF(1:k,1:k) is a partial triangular factor, */ /* the entries below the diagonal in the first k columns are the */ /* Householder vectors, and the rest of AF contains a partially updated */ /* matrix. */ /* This function returns ||A*P - Q*R||/(||norm(A)||*eps*M) */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrices A and AF. */ /* N (input) INTEGER */ /* The number of columns of the matrices A and AF. */ /* K (input) INTEGER */ /* The number of columns of AF that have been reduced */ /* to upper triangular form. */ /* A (input) REAL array, dimension (LDA, N) */ /* The original matrix A. */ /* AF (input) REAL array, dimension (LDA,N) */ /* The (possibly partial) output of SGEQPF. The upper triangle */ /* of AF(1:k,1:k) is a partial triangular factor, the entries */ /* below the diagonal in the first k columns are the Householder */ /* vectors, and the rest of AF contains a partially updated */ /* matrix. */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays A and AF. */ /* TAU (input) REAL array, dimension (K) */ /* Details of the Householder transformations as returned by */ /* SGEQPF. */ /* JPVT (input) INTEGER array, dimension (N) */ /* Pivot information as returned by SGEQPF. */ /* WORK (workspace) REAL array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The length of the array WORK. LWORK >= M*N+N. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --jpvt; --work; /* Function Body */ ret_val = 0.f; /* Test if there is enough workspace */ if (*lwork < *m * *n + *n) { xerbla_("SQPT01", &c__10); return ret_val; } /* Quick return if possible */ if (*m <= 0 || *n <= 0) { return ret_val; } norma = slange_("One-norm", m, n, &a[a_offset], lda, rwork); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = min(j,*m); for (i__ = 1; i__ <= i__2; ++i__) { work[(j - 1) * *m + i__] = af[i__ + j * af_dim1]; /* L10: */ } i__2 = *m; for (i__ = j + 1; i__ <= i__2; ++i__) { work[(j - 1) * *m + i__] = 0.f; /* L20: */ } /* L30: */ } i__1 = *n; for (j = *k + 1; j <= i__1; ++j) { scopy_(m, &af[j * af_dim1 + 1], &c__1, &work[(j - 1) * *m + 1], &c__1) ; /* L40: */ } i__1 = *lwork - *m * *n; sormqr_("Left", "No transpose", m, n, k, &af[af_offset], lda, &tau[1], & work[1], m, &work[*m * *n + 1], &i__1, &info); i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Compare i-th column of QR and jpvt(i)-th column of A */ saxpy_(m, &c_b14, &a[jpvt[j] * a_dim1 + 1], &c__1, &work[(j - 1) * *m + 1], &c__1); /* L50: */ } ret_val = slange_("One-norm", m, n, &work[1], m, rwork) / (( real) max(*m,*n) * slamch_("Epsilon")); if (norma != 0.f) { ret_val /= norma; } return ret_val; /* End of SQPT01 */ } /* sqpt01_ */