#include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static real c_b4 = -1e10f; static real c_b10 = 0.f; static real c_b15 = -1.f; static real c_b16 = 1.f; /* Subroutine */ int sqlt02_(integer *m, integer *n, integer *k, real *a, real *af, real *q, real *l, integer *lda, real *tau, real *work, integer *lwork, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, q_offset, i__1, i__2; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ real eps; integer info; real resid; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); real anorm; extern /* Subroutine */ int ssyrk_(char *, char *, integer *, integer *, real *, real *, integer *, real *, real *, integer *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), sorgql_( integer *, integer *, integer *, real *, integer *, real *, real * , integer *, integer *); extern doublereal slansy_(char *, char *, integer *, real *, integer *, real *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SQLT02 tests SORGQL, which generates an m-by-n matrix Q with */ /* orthonornmal columns that is defined as the product of k elementary */ /* reflectors. */ /* Given the QL factorization of an m-by-n matrix A, SQLT02 generates */ /* the orthogonal matrix Q defined by the factorization of the last k */ /* columns of A; it compares L(m-n+1:m,n-k+1:n) with */ /* Q(1:m,m-n+1:m)'*A(1:m,n-k+1:n), and checks that the columns of Q are */ /* orthonormal. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix Q to be generated. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix Q to be generated. */ /* M >= N >= 0. */ /* K (input) INTEGER */ /* The number of elementary reflectors whose product defines the */ /* matrix Q. N >= K >= 0. */ /* A (input) REAL array, dimension (LDA,N) */ /* The m-by-n matrix A which was factorized by SQLT01. */ /* AF (input) REAL array, dimension (LDA,N) */ /* Details of the QL factorization of A, as returned by SGEQLF. */ /* See SGEQLF for further details. */ /* Q (workspace) REAL array, dimension (LDA,N) */ /* L (workspace) REAL array, dimension (LDA,N) */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays A, AF, Q and L. LDA >= M. */ /* TAU (input) REAL array, dimension (N) */ /* The scalar factors of the elementary reflectors corresponding */ /* to the QL factorization in AF. */ /* WORK (workspace) REAL array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* RWORK (workspace) REAL array, dimension (M) */ /* RESULT (output) REAL array, dimension (2) */ /* The test ratios: */ /* RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) */ /* RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ l_dim1 = *lda; l_offset = 1 + l_dim1; l -= l_offset; q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; --rwork; --result; /* Function Body */ if (*m == 0 || *n == 0 || *k == 0) { result[1] = 0.f; result[2] = 0.f; return 0; } eps = slamch_("Epsilon"); /* Copy the last k columns of the factorization to the array Q */ slaset_("Full", m, n, &c_b4, &c_b4, &q[q_offset], lda); if (*k < *m) { i__1 = *m - *k; slacpy_("Full", &i__1, k, &af[(*n - *k + 1) * af_dim1 + 1], lda, &q[(* n - *k + 1) * q_dim1 + 1], lda); } if (*k > 1) { i__1 = *k - 1; i__2 = *k - 1; slacpy_("Upper", &i__1, &i__2, &af[*m - *k + 1 + (*n - *k + 2) * af_dim1], lda, &q[*m - *k + 1 + (*n - *k + 2) * q_dim1], lda); } /* Generate the last n columns of the matrix Q */ s_copy(srnamc_1.srnamt, "SORGQL", (ftnlen)6, (ftnlen)6); sorgql_(m, n, k, &q[q_offset], lda, &tau[*n - *k + 1], &work[1], lwork, & info); /* Copy L(m-n+1:m,n-k+1:n) */ slaset_("Full", n, k, &c_b10, &c_b10, &l[*m - *n + 1 + (*n - *k + 1) * l_dim1], lda); slacpy_("Lower", k, k, &af[*m - *k + 1 + (*n - *k + 1) * af_dim1], lda, & l[*m - *k + 1 + (*n - *k + 1) * l_dim1], lda); /* Compute L(m-n+1:m,n-k+1:n) - Q(1:m,m-n+1:m)' * A(1:m,n-k+1:n) */ sgemm_("Transpose", "No transpose", n, k, m, &c_b15, &q[q_offset], lda, & a[(*n - *k + 1) * a_dim1 + 1], lda, &c_b16, &l[*m - *n + 1 + (*n - *k + 1) * l_dim1], lda); /* Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) . */ anorm = slange_("1", m, k, &a[(*n - *k + 1) * a_dim1 + 1], lda, &rwork[1]); resid = slange_("1", n, k, &l[*m - *n + 1 + (*n - *k + 1) * l_dim1], lda, &rwork[1]); if (anorm > 0.f) { result[1] = resid / (real) max(1,*m) / anorm / eps; } else { result[1] = 0.f; } /* Compute I - Q'*Q */ slaset_("Full", n, n, &c_b10, &c_b16, &l[l_offset], lda); ssyrk_("Upper", "Transpose", n, m, &c_b15, &q[q_offset], lda, &c_b16, &l[ l_offset], lda); /* Compute norm( I - Q'*Q ) / ( M * EPS ) . */ resid = slansy_("1", "Upper", n, &l[l_offset], lda, &rwork[1]); result[2] = resid / (real) max(1,*m) / eps; return 0; /* End of SQLT02 */ } /* sqlt02_ */