#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int sptt05_(integer *n, integer *nrhs, real *d__, real *e, real *b, integer *ldb, real *x, integer *ldx, real *xact, integer * ldxact, real *ferr, real *berr, real *reslts) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, xact_dim1, xact_offset, i__1, i__2; real r__1, r__2, r__3, r__4; /* Local variables */ integer i__, j, k, nz; real eps, tmp, diff, axbi; integer imax; real unfl, ovfl, xnorm; extern doublereal slamch_(char *); real errbnd; extern integer isamax_(integer *, real *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SPTT05 tests the error bounds from iterative refinement for the */ /* computed solution to a system of equations A*X = B, where A is a */ /* symmetric tridiagonal matrix of order n. */ /* RESLTS(1) = test of the error bound */ /* = norm(X - XACT) / ( norm(X) * FERR ) */ /* A large value is returned if this ratio is not less than one. */ /* RESLTS(2) = residual from the iterative refinement routine */ /* = the maximum of BERR / ( NZ*EPS + (*) ), where */ /* (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) */ /* and NZ = max. number of nonzeros in any row of A, plus 1 */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The number of rows of the matrices X, B, and XACT, and the */ /* order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of columns of the matrices X, B, and XACT. */ /* NRHS >= 0. */ /* D (input) REAL array, dimension (N) */ /* The n diagonal elements of the tridiagonal matrix A. */ /* E (input) REAL array, dimension (N-1) */ /* The (n-1) subdiagonal elements of the tridiagonal matrix A. */ /* B (input) REAL array, dimension (LDB,NRHS) */ /* The right hand side vectors for the system of linear */ /* equations. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (input) REAL array, dimension (LDX,NRHS) */ /* The computed solution vectors. Each vector is stored as a */ /* column of the matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* XACT (input) REAL array, dimension (LDX,NRHS) */ /* The exact solution vectors. Each vector is stored as a */ /* column of the matrix XACT. */ /* LDXACT (input) INTEGER */ /* The leading dimension of the array XACT. LDXACT >= max(1,N). */ /* FERR (input) REAL array, dimension (NRHS) */ /* The estimated forward error bounds for each solution vector */ /* X. If XTRUE is the true solution, FERR bounds the magnitude */ /* of the largest entry in (X - XTRUE) divided by the magnitude */ /* of the largest entry in X. */ /* BERR (input) REAL array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector (i.e., the smallest relative change in any entry of A */ /* or B that makes X an exact solution). */ /* RESLTS (output) REAL array, dimension (2) */ /* The maximum over the NRHS solution vectors of the ratios: */ /* RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) */ /* RESLTS(2) = BERR / ( NZ*EPS + (*) ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 or NRHS = 0. */ /* Parameter adjustments */ --d__; --e; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; xact_dim1 = *ldxact; xact_offset = 1 + xact_dim1; xact -= xact_offset; --ferr; --berr; --reslts; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { reslts[1] = 0.f; reslts[2] = 0.f; return 0; } eps = slamch_("Epsilon"); unfl = slamch_("Safe minimum"); ovfl = 1.f / unfl; nz = 4; /* Test 1: Compute the maximum of */ /* norm(X - XACT) / ( norm(X) * FERR ) */ /* over all the vectors X and XACT using the infinity-norm. */ errbnd = 0.f; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { imax = isamax_(n, &x[j * x_dim1 + 1], &c__1); /* Computing MAX */ r__2 = (r__1 = x[imax + j * x_dim1], dabs(r__1)); xnorm = dmax(r__2,unfl); diff = 0.f; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ r__2 = diff, r__3 = (r__1 = x[i__ + j * x_dim1] - xact[i__ + j * xact_dim1], dabs(r__1)); diff = dmax(r__2,r__3); /* L10: */ } if (xnorm > 1.f) { goto L20; } else if (diff <= ovfl * xnorm) { goto L20; } else { errbnd = 1.f / eps; goto L30; } L20: if (diff / xnorm <= ferr[j]) { /* Computing MAX */ r__1 = errbnd, r__2 = diff / xnorm / ferr[j]; errbnd = dmax(r__1,r__2); } else { errbnd = 1.f / eps; } L30: ; } reslts[1] = errbnd; /* Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where */ /* (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) */ i__1 = *nrhs; for (k = 1; k <= i__1; ++k) { if (*n == 1) { axbi = (r__1 = b[k * b_dim1 + 1], dabs(r__1)) + (r__2 = d__[1] * x[k * x_dim1 + 1], dabs(r__2)); } else { axbi = (r__1 = b[k * b_dim1 + 1], dabs(r__1)) + (r__2 = d__[1] * x[k * x_dim1 + 1], dabs(r__2)) + (r__3 = e[1] * x[k * x_dim1 + 2], dabs(r__3)); i__2 = *n - 1; for (i__ = 2; i__ <= i__2; ++i__) { tmp = (r__1 = b[i__ + k * b_dim1], dabs(r__1)) + (r__2 = e[ i__ - 1] * x[i__ - 1 + k * x_dim1], dabs(r__2)) + ( r__3 = d__[i__] * x[i__ + k * x_dim1], dabs(r__3)) + ( r__4 = e[i__] * x[i__ + 1 + k * x_dim1], dabs(r__4)); axbi = dmin(axbi,tmp); /* L40: */ } tmp = (r__1 = b[*n + k * b_dim1], dabs(r__1)) + (r__2 = e[*n - 1] * x[*n - 1 + k * x_dim1], dabs(r__2)) + (r__3 = d__[*n] * x[*n + k * x_dim1], dabs(r__3)); axbi = dmin(axbi,tmp); } /* Computing MAX */ r__1 = axbi, r__2 = nz * unfl; tmp = berr[k] / (nz * eps + nz * unfl / dmax(r__1,r__2)); if (k == 1) { reslts[2] = tmp; } else { reslts[2] = dmax(reslts[2],tmp); } /* L50: */ } return 0; /* End of SPTT05 */ } /* sptt05_ */