#include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static doublereal c_b4 = -1e10; static doublereal c_b9 = 0.; static doublereal c_b14 = -1.; static doublereal c_b15 = 1.; /* Subroutine */ int dlqt02_(integer *m, integer *n, integer *k, doublereal * a, doublereal *af, doublereal *q, doublereal *l, integer *lda, doublereal *tau, doublereal *work, integer *lwork, doublereal *rwork, doublereal *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, q_offset, i__1; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ doublereal eps; integer info; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); doublereal resid, anorm; extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), dorglq_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *); extern doublereal dlansy_(char *, char *, integer *, doublereal *, integer *, doublereal *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLQT02 tests DORGLQ, which generates an m-by-n matrix Q with */ /* orthonornmal rows that is defined as the product of k elementary */ /* reflectors. */ /* Given the LQ factorization of an m-by-n matrix A, DLQT02 generates */ /* the orthogonal matrix Q defined by the factorization of the first k */ /* rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and */ /* checks that the rows of Q are orthonormal. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix Q to be generated. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix Q to be generated. */ /* N >= M >= 0. */ /* K (input) INTEGER */ /* The number of elementary reflectors whose product defines the */ /* matrix Q. M >= K >= 0. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* The m-by-n matrix A which was factorized by DLQT01. */ /* AF (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* Details of the LQ factorization of A, as returned by DGELQF. */ /* See DGELQF for further details. */ /* Q (workspace) DOUBLE PRECISION array, dimension (LDA,N) */ /* L (workspace) DOUBLE PRECISION array, dimension (LDA,M) */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays A, AF, Q and L. LDA >= N. */ /* TAU (input) DOUBLE PRECISION array, dimension (M) */ /* The scalar factors of the elementary reflectors corresponding */ /* to the LQ factorization in AF. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (M) */ /* RESULT (output) DOUBLE PRECISION array, dimension (2) */ /* The test ratios: */ /* RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) */ /* RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ l_dim1 = *lda; l_offset = 1 + l_dim1; l -= l_offset; q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; --rwork; --result; /* Function Body */ eps = dlamch_("Epsilon"); /* Copy the first k rows of the factorization to the array Q */ dlaset_("Full", m, n, &c_b4, &c_b4, &q[q_offset], lda); i__1 = *n - 1; dlacpy_("Upper", k, &i__1, &af[(af_dim1 << 1) + 1], lda, &q[(q_dim1 << 1) + 1], lda); /* Generate the first n columns of the matrix Q */ s_copy(srnamc_1.srnamt, "DORGLQ", (ftnlen)6, (ftnlen)6); dorglq_(m, n, k, &q[q_offset], lda, &tau[1], &work[1], lwork, &info); /* Copy L(1:k,1:m) */ dlaset_("Full", k, m, &c_b9, &c_b9, &l[l_offset], lda); dlacpy_("Lower", k, m, &af[af_offset], lda, &l[l_offset], lda); /* Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)' */ dgemm_("No transpose", "Transpose", k, m, n, &c_b14, &a[a_offset], lda, & q[q_offset], lda, &c_b15, &l[l_offset], lda); /* Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) . */ anorm = dlange_("1", k, n, &a[a_offset], lda, &rwork[1]); resid = dlange_("1", k, m, &l[l_offset], lda, &rwork[1]); if (anorm > 0.) { result[1] = resid / (doublereal) max(1,*n) / anorm / eps; } else { result[1] = 0.; } /* Compute I - Q*Q' */ dlaset_("Full", m, m, &c_b9, &c_b15, &l[l_offset], lda); dsyrk_("Upper", "No transpose", m, n, &c_b14, &q[q_offset], lda, &c_b15, & l[l_offset], lda); /* Compute norm( I - Q*Q' ) / ( N * EPS ) . */ resid = dlansy_("1", "Upper", m, &l[l_offset], lda, &rwork[1]); result[2] = resid / (doublereal) max(1,*n) / eps; return 0; /* End of DLQT02 */ } /* dlqt02_ */