#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int dgbt05_(char *trans, integer *n, integer *kl, integer * ku, integer *nrhs, doublereal *ab, integer *ldab, doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *xact, integer * ldxact, doublereal *ferr, doublereal *berr, doublereal *reslts) { /* System generated locals */ integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, xact_dim1, xact_offset, i__1, i__2, i__3, i__4, i__5; doublereal d__1, d__2, d__3; /* Local variables */ integer i__, j, k, nz; doublereal eps, tmp, diff, axbi; integer imax; doublereal unfl, ovfl; extern logical lsame_(char *, char *); doublereal xnorm; extern doublereal dlamch_(char *); extern integer idamax_(integer *, doublereal *, integer *); doublereal errbnd; logical notran; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGBT05 tests the error bounds from iterative refinement for the */ /* computed solution to a system of equations op(A)*X = B, where A is a */ /* general band matrix of order n with kl subdiagonals and ku */ /* superdiagonals and op(A) = A or A**T, depending on TRANS. */ /* RESLTS(1) = test of the error bound */ /* = norm(X - XACT) / ( norm(X) * FERR ) */ /* A large value is returned if this ratio is not less than one. */ /* RESLTS(2) = residual from the iterative refinement routine */ /* = the maximum of BERR / ( NZ*EPS + (*) ), where */ /* (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i ) */ /* and NZ = max. number of nonzeros in any row of A, plus 1 */ /* Arguments */ /* ========= */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations. */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ /* N (input) INTEGER */ /* The number of rows of the matrices X, B, and XACT, and the */ /* order of the matrix A. N >= 0. */ /* KL (input) INTEGER */ /* The number of subdiagonals within the band of A. KL >= 0. */ /* KU (input) INTEGER */ /* The number of superdiagonals within the band of A. KU >= 0. */ /* NRHS (input) INTEGER */ /* The number of columns of the matrices X, B, and XACT. */ /* NRHS >= 0. */ /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */ /* The original band matrix A, stored in rows 1 to KL+KU+1. */ /* The j-th column of A is stored in the j-th column of the */ /* array AB as follows: */ /* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KL+KU+1. */ /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */ /* The right hand side vectors for the system of linear */ /* equations. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* The computed solution vectors. Each vector is stored as a */ /* column of the matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* XACT (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* The exact solution vectors. Each vector is stored as a */ /* column of the matrix XACT. */ /* LDXACT (input) INTEGER */ /* The leading dimension of the array XACT. LDXACT >= max(1,N). */ /* FERR (input) DOUBLE PRECISION array, dimension (NRHS) */ /* The estimated forward error bounds for each solution vector */ /* X. If XTRUE is the true solution, FERR bounds the magnitude */ /* of the largest entry in (X - XTRUE) divided by the magnitude */ /* of the largest entry in X. */ /* BERR (input) DOUBLE PRECISION array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector (i.e., the smallest relative change in any entry of A */ /* or B that makes X an exact solution). */ /* RESLTS (output) DOUBLE PRECISION array, dimension (2) */ /* The maximum over the NRHS solution vectors of the ratios: */ /* RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) */ /* RESLTS(2) = BERR / ( NZ*EPS + (*) ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 or NRHS = 0. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; xact_dim1 = *ldxact; xact_offset = 1 + xact_dim1; xact -= xact_offset; --ferr; --berr; --reslts; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { reslts[1] = 0.; reslts[2] = 0.; return 0; } eps = dlamch_("Epsilon"); unfl = dlamch_("Safe minimum"); ovfl = 1. / unfl; notran = lsame_(trans, "N"); /* Computing MIN */ i__1 = *kl + *ku + 2, i__2 = *n + 1; nz = min(i__1,i__2); /* Test 1: Compute the maximum of */ /* norm(X - XACT) / ( norm(X) * FERR ) */ /* over all the vectors X and XACT using the infinity-norm. */ errbnd = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { imax = idamax_(n, &x[j * x_dim1 + 1], &c__1); /* Computing MAX */ d__2 = (d__1 = x[imax + j * x_dim1], abs(d__1)); xnorm = max(d__2,unfl); diff = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = diff, d__3 = (d__1 = x[i__ + j * x_dim1] - xact[i__ + j * xact_dim1], abs(d__1)); diff = max(d__2,d__3); /* L10: */ } if (xnorm > 1.) { goto L20; } else if (diff <= ovfl * xnorm) { goto L20; } else { errbnd = 1. / eps; goto L30; } L20: if (diff / xnorm <= ferr[j]) { /* Computing MAX */ d__1 = errbnd, d__2 = diff / xnorm / ferr[j]; errbnd = max(d__1,d__2); } else { errbnd = 1. / eps; } L30: ; } reslts[1] = errbnd; /* Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where */ /* (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i ) */ i__1 = *nrhs; for (k = 1; k <= i__1; ++k) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { tmp = (d__1 = b[i__ + k * b_dim1], abs(d__1)); if (notran) { /* Computing MAX */ i__3 = i__ - *kl; /* Computing MIN */ i__5 = i__ + *ku; i__4 = min(i__5,*n); for (j = max(i__3,1); j <= i__4; ++j) { tmp += (d__1 = ab[*ku + 1 + i__ - j + j * ab_dim1], abs( d__1)) * (d__2 = x[j + k * x_dim1], abs(d__2)); /* L40: */ } } else { /* Computing MAX */ i__4 = i__ - *ku; /* Computing MIN */ i__5 = i__ + *kl; i__3 = min(i__5,*n); for (j = max(i__4,1); j <= i__3; ++j) { tmp += (d__1 = ab[*ku + 1 + j - i__ + i__ * ab_dim1], abs( d__1)) * (d__2 = x[j + k * x_dim1], abs(d__2)); /* L50: */ } } if (i__ == 1) { axbi = tmp; } else { axbi = min(axbi,tmp); } /* L60: */ } /* Computing MAX */ d__1 = axbi, d__2 = nz * unfl; tmp = berr[k] / (nz * eps + nz * unfl / max(d__1,d__2)); if (k == 1) { reslts[2] = tmp; } else { reslts[2] = max(reslts[2],tmp); } /* L70: */ } return 0; /* End of DGBT05 */ } /* dgbt05_ */