#include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__3 = 3; static integer c__0 = 0; static integer c_n1 = -1; static integer c__1 = 1; static integer c__2 = 2; static integer c__7 = 7; static doublereal c_b63 = 1.; static doublereal c_b64 = 0.; /* Subroutine */ int dchkgt_(logical *dotype, integer *nn, integer *nval, integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, doublereal *a, doublereal *af, doublereal *b, doublereal *x, doublereal *xact, doublereal *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 0,0,0,1 }; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(12x,\002N =\002,i5,\002,\002,10x,\002 type" " \002,i2,\002, test(\002,i2,\002) = \002,g12.5)"; static char fmt_9997[] = "(\002 NORM ='\002,a1,\002', N =\002,i5,\002" ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) = \002,g12." "5)"; static char fmt_9998[] = "(\002 TRANS='\002,a1,\002', N =\002,i5,\002, N" "RHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) = \002,g" "12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4; doublereal d__1, d__2; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, k, m, n; doublereal z__[3]; integer in, kl, ku, ix, lda; doublereal cond; integer mode, koff, imat, info; char path[3], dist[1]; integer irhs, nrhs; char norm[1], type__[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *), dscal_( integer *, doublereal *, doublereal *, integer *), dget04_( integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); extern /* Subroutine */ int dgtt01_(integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *), dgtt02_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal * , integer *, doublereal *, doublereal *); doublereal rcond; extern /* Subroutine */ int dgtt05_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *); integer nimat; extern doublereal dasum_(integer *, doublereal *, integer *); doublereal anorm; integer itran; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); char trans[1]; integer izero, nerrs; logical zerot; extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); doublereal rcondc; extern doublereal dlangt_(char *, integer *, doublereal *, doublereal *, doublereal *); extern /* Subroutine */ int derrge_(char *, integer *), dlagtm_( char *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *), dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); doublereal rcondi; extern /* Subroutine */ int dgtcon_(char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *), alasum_(char *, integer *, integer *, integer *, integer *); doublereal rcondo; extern /* Subroutine */ int dlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublereal *, integer *, doublereal *, integer *), dlarnv_(integer *, integer *, integer *, doublereal *); doublereal ainvnm; extern /* Subroutine */ int dgtrfs_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *), dgttrf_(integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *); logical trfcon; extern /* Subroutine */ int dgttrs_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); doublereal result[7]; /* Fortran I/O blocks */ static cilist io___29 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___39 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DCHKGT tests DGTTRF, -TRS, -RFS, and -CON */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* A (workspace) DOUBLE PRECISION array, dimension (NMAX*4) */ /* AF (workspace) DOUBLE PRECISION array, dimension (NMAX*4) */ /* B (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */ /* XACT (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */ /* WORK (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*max(3,NSMAX)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension */ /* (max(NMAX,2*NSMAX)) */ /* IWORK (workspace) INTEGER array, dimension (2*NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --af; --a; --nsval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { derrge_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL. */ n = nval[in]; /* Computing MAX */ i__2 = n - 1; m = max(i__2,0); lda = max(1,n); nimat = 12; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L100; } /* Set up parameters with DLATB4. */ dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, & cond, dist); zerot = imat >= 8 && imat <= 10; if (imat <= 6) { /* Types 1-6: generate matrices of known condition number. */ /* Computing MAX */ i__3 = 2 - ku, i__4 = 3 - max(1,n); koff = max(i__3,i__4); s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)6, (ftnlen)6); dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, &anorm, &kl, &ku, "Z", &af[koff], &c__3, &work[1], & info); /* Check the error code from DLATMS. */ if (info != 0) { alaerh_(path, "DLATMS", &info, &c__0, " ", &n, &n, &kl, & ku, &c_n1, &imat, &nfail, &nerrs, nout); goto L100; } izero = 0; if (n > 1) { i__3 = n - 1; dcopy_(&i__3, &af[4], &c__3, &a[1], &c__1); i__3 = n - 1; dcopy_(&i__3, &af[3], &c__3, &a[n + m + 1], &c__1); } dcopy_(&n, &af[2], &c__3, &a[m + 1], &c__1); } else { /* Types 7-12: generate tridiagonal matrices with */ /* unknown condition numbers. */ if (! zerot || ! dotype[7]) { /* Generate a matrix with elements from [-1,1]. */ i__3 = n + (m << 1); dlarnv_(&c__2, iseed, &i__3, &a[1]); if (anorm != 1.) { i__3 = n + (m << 1); dscal_(&i__3, &anorm, &a[1], &c__1); } } else if (izero > 0) { /* Reuse the last matrix by copying back the zeroed out */ /* elements. */ if (izero == 1) { a[n] = z__[1]; if (n > 1) { a[1] = z__[2]; } } else if (izero == n) { a[n * 3 - 2] = z__[0]; a[(n << 1) - 1] = z__[1]; } else { a[(n << 1) - 2 + izero] = z__[0]; a[n - 1 + izero] = z__[1]; a[izero] = z__[2]; } } /* If IMAT > 7, set one column of the matrix to 0. */ if (! zerot) { izero = 0; } else if (imat == 8) { izero = 1; z__[1] = a[n]; a[n] = 0.; if (n > 1) { z__[2] = a[1]; a[1] = 0.; } } else if (imat == 9) { izero = n; z__[0] = a[n * 3 - 2]; z__[1] = a[(n << 1) - 1]; a[n * 3 - 2] = 0.; a[(n << 1) - 1] = 0.; } else { izero = (n + 1) / 2; i__3 = n - 1; for (i__ = izero; i__ <= i__3; ++i__) { a[(n << 1) - 2 + i__] = 0.; a[n - 1 + i__] = 0.; a[i__] = 0.; /* L20: */ } a[n * 3 - 2] = 0.; a[(n << 1) - 1] = 0.; } } /* + TEST 1 */ /* Factor A as L*U and compute the ratio */ /* norm(L*U - A) / (n * norm(A) * EPS ) */ i__3 = n + (m << 1); dcopy_(&i__3, &a[1], &c__1, &af[1], &c__1); s_copy(srnamc_1.srnamt, "DGTTRF", (ftnlen)6, (ftnlen)6); dgttrf_(&n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &info); /* Check error code from DGTTRF. */ if (info != izero) { alaerh_(path, "DGTTRF", &info, &izero, " ", &n, &n, &c__1, & c__1, &c_n1, &imat, &nfail, &nerrs, nout); } trfcon = info != 0; dgtt01_(&n, &a[1], &a[m + 1], &a[n + m + 1], &af[1], &af[m + 1], & af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &work[1], &lda, &rwork[1], result); /* Print the test ratio if it is .GE. THRESH. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___29.ciunit = *nout; s_wsfe(&io___29); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } ++nrun; for (itran = 1; itran <= 2; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1] ; if (itran == 1) { *(unsigned char *)norm = 'O'; } else { *(unsigned char *)norm = 'I'; } anorm = dlangt_(norm, &n, &a[1], &a[m + 1], &a[n + m + 1]); if (! trfcon) { /* Use DGTTRS to solve for one column at a time of inv(A) */ /* or inv(A^T), computing the maximum column sum as we */ /* go. */ ainvnm = 0.; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = n; for (j = 1; j <= i__4; ++j) { x[j] = 0.; /* L30: */ } x[i__] = 1.; dgttrs_(trans, &n, &c__1, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &x[ 1], &lda, &info); /* Computing MAX */ d__1 = ainvnm, d__2 = dasum_(&n, &x[1], &c__1); ainvnm = max(d__1,d__2); /* L40: */ } /* Compute RCONDC = 1 / (norm(A) * norm(inv(A)) */ if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } if (itran == 1) { rcondo = rcondc; } else { rcondi = rcondc; } } else { rcondc = 0.; } /* + TEST 7 */ /* Estimate the reciprocal of the condition number of the */ /* matrix. */ s_copy(srnamc_1.srnamt, "DGTCON", (ftnlen)6, (ftnlen)6); dgtcon_(norm, &n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &anorm, &rcond, &work[1], & iwork[n + 1], &info); /* Check error code from DGTCON. */ if (info != 0) { alaerh_(path, "DGTCON", &info, &c__0, norm, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } result[6] = dget06_(&rcond, &rcondc); /* Print the test ratio if it is .GE. THRESH. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___39.ciunit = *nout; s_wsfe(&io___39); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; /* L50: */ } /* Skip the remaining tests if the matrix is singular. */ if (trfcon) { goto L100; } i__3 = *nns; for (irhs = 1; irhs <= i__3; ++irhs) { nrhs = nsval[irhs]; /* Generate NRHS random solution vectors. */ ix = 1; i__4 = nrhs; for (j = 1; j <= i__4; ++j) { dlarnv_(&c__2, iseed, &n, &xact[ix]); ix += lda; /* L60: */ } for (itran = 1; itran <= 3; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; if (itran == 1) { rcondc = rcondo; } else { rcondc = rcondi; } /* Set the right hand side. */ dlagtm_(trans, &n, &nrhs, &c_b63, &a[1], &a[m + 1], &a[n + m + 1], &xact[1], &lda, &c_b64, &b[1], &lda); /* + TEST 2 */ /* Solve op(A) * X = B and compute the residual. */ dlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "DGTTRS", (ftnlen)6, (ftnlen)6); dgttrs_(trans, &n, &nrhs, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &x[1], &lda, &info); /* Check error code from DGTTRS. */ if (info != 0) { alaerh_(path, "DGTTRS", &info, &c__0, trans, &n, &n, & c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } dlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda); dgtt02_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], &x[1], &lda, &work[1], &lda, &rwork[1], &result[ 1]); /* + TEST 3 */ /* Check solution from generated exact solution. */ dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[2]); /* + TESTS 4, 5, and 6 */ /* Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "DGTRFS", (ftnlen)6, (ftnlen)6); dgtrfs_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &b[1], &lda, &x[1], &lda, & rwork[1], &rwork[nrhs + 1], &work[1], &iwork[n + 1], &info); /* Check error code from DGTRFS. */ if (info != 0) { alaerh_(path, "DGTRFS", &info, &c__0, trans, &n, &n, & c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[3]); dgtt05_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[ 1], &rwork[nrhs + 1], &result[4]); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___44.ciunit = *nout; s_wsfe(&io___44); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L70: */ } nrun += 5; /* L80: */ } /* L90: */ } L100: ; } /* L110: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of DCHKGT */ } /* dchkgt_ */