#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int cptt01_(integer *n, real *d__, complex *e, real *df, complex *ef, complex *work, real *resid) { /* System generated locals */ integer i__1, i__2, i__3, i__4; real r__1, r__2; complex q__1, q__2, q__3, q__4; /* Builtin functions */ void r_cnjg(complex *, complex *); double c_abs(complex *); /* Local variables */ integer i__; complex de; real eps, anorm; extern doublereal slamch_(char *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CPTT01 reconstructs a tridiagonal matrix A from its L*D*L' */ /* factorization and computes the residual */ /* norm(L*D*L' - A) / ( n * norm(A) * EPS ), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========= */ /* N (input) INTEGTER */ /* The order of the matrix A. */ /* D (input) REAL array, dimension (N) */ /* The n diagonal elements of the tridiagonal matrix A. */ /* E (input) COMPLEX array, dimension (N-1) */ /* The (n-1) subdiagonal elements of the tridiagonal matrix A. */ /* DF (input) REAL array, dimension (N) */ /* The n diagonal elements of the factor L from the L*D*L' */ /* factorization of A. */ /* EF (input) COMPLEX array, dimension (N-1) */ /* The (n-1) subdiagonal elements of the factor L from the */ /* L*D*L' factorization of A. */ /* WORK (workspace) COMPLEX array, dimension (2*N) */ /* RESID (output) REAL */ /* norm(L*D*L' - A) / (n * norm(A) * EPS) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ --work; --ef; --df; --e; --d__; /* Function Body */ if (*n <= 0) { *resid = 0.f; return 0; } eps = slamch_("Epsilon"); /* Construct the difference L*D*L' - A. */ r__1 = df[1] - d__[1]; work[1].r = r__1, work[1].i = 0.f; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; q__1.r = df[i__2] * ef[i__3].r, q__1.i = df[i__2] * ef[i__3].i; de.r = q__1.r, de.i = q__1.i; i__2 = *n + i__; i__3 = i__; q__1.r = de.r - e[i__3].r, q__1.i = de.i - e[i__3].i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; i__2 = i__ + 1; r_cnjg(&q__4, &ef[i__]); q__3.r = de.r * q__4.r - de.i * q__4.i, q__3.i = de.r * q__4.i + de.i * q__4.r; i__3 = i__ + 1; q__2.r = q__3.r + df[i__3], q__2.i = q__3.i; i__4 = i__ + 1; q__1.r = q__2.r - d__[i__4], q__1.i = q__2.i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; /* L10: */ } /* Compute the 1-norms of the tridiagonal matrices A and WORK. */ if (*n == 1) { anorm = d__[1]; *resid = c_abs(&work[1]); } else { /* Computing MAX */ r__1 = d__[1] + c_abs(&e[1]), r__2 = d__[*n] + c_abs(&e[*n - 1]); anorm = dmax(r__1,r__2); /* Computing MAX */ r__1 = c_abs(&work[1]) + c_abs(&work[*n + 1]), r__2 = c_abs(&work[*n]) + c_abs(&work[(*n << 1) - 1]); *resid = dmax(r__1,r__2); i__1 = *n - 1; for (i__ = 2; i__ <= i__1; ++i__) { /* Computing MAX */ r__1 = anorm, r__2 = d__[i__] + c_abs(&e[i__]) + c_abs(&e[i__ - 1] ); anorm = dmax(r__1,r__2); /* Computing MAX */ r__1 = *resid, r__2 = c_abs(&work[i__]) + c_abs(&work[*n + i__ - 1]) + c_abs(&work[*n + i__]); *resid = dmax(r__1,r__2); /* L20: */ } } /* Compute norm(L*D*L' - A) / (n * norm(A) * EPS) */ if (anorm <= 0.f) { if (*resid != 0.f) { *resid = 1.f / eps; } } else { *resid = *resid / (real) (*n) / anorm / eps; } return 0; /* End of CPTT01 */ } /* cptt01_ */