#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {0.f,0.f}; /* Subroutine */ int cget03_(integer *n, complex *a, integer *lda, complex * ainv, integer *ldainv, complex *work, integer *ldwork, real *rwork, real *rcond, real *resid) { /* System generated locals */ integer a_dim1, a_offset, ainv_dim1, ainv_offset, work_dim1, work_offset, i__1, i__2, i__3; complex q__1; /* Local variables */ integer i__; real eps; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); real anorm; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), slamch_(char *); real ainvnm; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGET03 computes the residual for a general matrix times its inverse: */ /* norm( I - AINV*A ) / ( N * norm(A) * norm(AINV) * EPS ), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========== */ /* N (input) INTEGER */ /* The number of rows and columns of the matrix A. N >= 0. */ /* A (input) COMPLEX array, dimension (LDA,N) */ /* The original N x N matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* AINV (input) COMPLEX array, dimension (LDAINV,N) */ /* The inverse of the matrix A. */ /* LDAINV (input) INTEGER */ /* The leading dimension of the array AINV. LDAINV >= max(1,N). */ /* WORK (workspace) COMPLEX array, dimension (LDWORK,N) */ /* LDWORK (input) INTEGER */ /* The leading dimension of the array WORK. LDWORK >= max(1,N). */ /* RWORK (workspace) REAL array, dimension (N) */ /* RCOND (output) REAL */ /* The reciprocal of the condition number of A, computed as */ /* ( 1/norm(A) ) / norm(AINV). */ /* RESID (output) REAL */ /* norm(I - AINV*A) / ( N * norm(A) * norm(AINV) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; ainv_dim1 = *ldainv; ainv_offset = 1 + ainv_dim1; ainv -= ainv_offset; work_dim1 = *ldwork; work_offset = 1 + work_dim1; work -= work_offset; --rwork; /* Function Body */ if (*n <= 0) { *rcond = 1.f; *resid = 0.f; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */ eps = slamch_("Epsilon"); anorm = clange_("1", n, n, &a[a_offset], lda, &rwork[1]); ainvnm = clange_("1", n, n, &ainv[ainv_offset], ldainv, &rwork[1]); if (anorm <= 0.f || ainvnm <= 0.f) { *rcond = 0.f; *resid = 1.f / eps; return 0; } *rcond = 1.f / anorm / ainvnm; /* Compute I - A * AINV */ q__1.r = -1.f, q__1.i = -0.f; cgemm_("No transpose", "No transpose", n, n, n, &q__1, &ainv[ainv_offset], ldainv, &a[a_offset], lda, &c_b1, &work[work_offset], ldwork); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + i__ * work_dim1; i__3 = i__ + i__ * work_dim1; q__1.r = work[i__3].r + 1.f, q__1.i = work[i__3].i + 0.f; work[i__2].r = q__1.r, work[i__2].i = q__1.i; /* L10: */ } /* Compute norm(I - AINV*A) / (N * norm(A) * norm(AINV) * EPS) */ *resid = clange_("1", n, n, &work[work_offset], ldwork, &rwork[1]); *resid = *resid * *rcond / eps / (real) (*n); return 0; /* End of CGET03 */ } /* cget03_ */