#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static real c_b12 = 1.f; static real c_b13 = 0.f; /* Subroutine */ int sstt22_(integer *n, integer *m, integer *kband, real *ad, real *ae, real *sd, real *se, real *u, integer *ldu, real *work, integer *ldwork, real *result) { /* System generated locals */ integer u_dim1, u_offset, work_dim1, work_offset, i__1, i__2, i__3; real r__1, r__2, r__3, r__4, r__5; /* Local variables */ integer i__, j, k; real ulp, aukj, unfl; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); real anorm, wnorm; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *), slansy_(char *, char *, integer *, real *, integer *, real *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSTT22 checks a set of M eigenvalues and eigenvectors, */ /* A U = U S */ /* where A is symmetric tridiagonal, the columns of U are orthogonal, */ /* and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1). */ /* Two tests are performed: */ /* RESULT(1) = | U' A U - S | / ( |A| m ulp ) */ /* RESULT(2) = | I - U'U | / ( m ulp ) */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The size of the matrix. If it is zero, SSTT22 does nothing. */ /* It must be at least zero. */ /* M (input) INTEGER */ /* The number of eigenpairs to check. If it is zero, SSTT22 */ /* does nothing. It must be at least zero. */ /* KBAND (input) INTEGER */ /* The bandwidth of the matrix S. It may only be zero or one. */ /* If zero, then S is diagonal, and SE is not referenced. If */ /* one, then S is symmetric tri-diagonal. */ /* AD (input) REAL array, dimension (N) */ /* The diagonal of the original (unfactored) matrix A. A is */ /* assumed to be symmetric tridiagonal. */ /* AE (input) REAL array, dimension (N) */ /* The off-diagonal of the original (unfactored) matrix A. A */ /* is assumed to be symmetric tridiagonal. AE(1) is ignored, */ /* AE(2) is the (1,2) and (2,1) element, etc. */ /* SD (input) REAL array, dimension (N) */ /* The diagonal of the (symmetric tri-) diagonal matrix S. */ /* SE (input) REAL array, dimension (N) */ /* The off-diagonal of the (symmetric tri-) diagonal matrix S. */ /* Not referenced if KBSND=0. If KBAND=1, then AE(1) is */ /* ignored, SE(2) is the (1,2) and (2,1) element, etc. */ /* U (input) REAL array, dimension (LDU, N) */ /* The orthogonal matrix in the decomposition. */ /* LDU (input) INTEGER */ /* The leading dimension of U. LDU must be at least N. */ /* WORK (workspace) REAL array, dimension (LDWORK, M+1) */ /* LDWORK (input) INTEGER */ /* The leading dimension of WORK. LDWORK must be at least */ /* max(1,M). */ /* RESULT (output) REAL array, dimension (2) */ /* The values computed by the two tests described above. The */ /* values are currently limited to 1/ulp, to avoid overflow. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --ad; --ae; --sd; --se; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; work_dim1 = *ldwork; work_offset = 1 + work_dim1; work -= work_offset; --result; /* Function Body */ result[1] = 0.f; result[2] = 0.f; if (*n <= 0 || *m <= 0) { return 0; } unfl = slamch_("Safe minimum"); ulp = slamch_("Epsilon"); /* Do Test 1 */ /* Compute the 1-norm of A. */ if (*n > 1) { anorm = dabs(ad[1]) + dabs(ae[1]); i__1 = *n - 1; for (j = 2; j <= i__1; ++j) { /* Computing MAX */ r__4 = anorm, r__5 = (r__1 = ad[j], dabs(r__1)) + (r__2 = ae[j], dabs(r__2)) + (r__3 = ae[j - 1], dabs(r__3)); anorm = dmax(r__4,r__5); /* L10: */ } /* Computing MAX */ r__3 = anorm, r__4 = (r__1 = ad[*n], dabs(r__1)) + (r__2 = ae[*n - 1], dabs(r__2)); anorm = dmax(r__3,r__4); } else { anorm = dabs(ad[1]); } anorm = dmax(anorm,unfl); /* Norm of U'AU - S */ i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *m; for (j = 1; j <= i__2; ++j) { work[i__ + j * work_dim1] = 0.f; i__3 = *n; for (k = 1; k <= i__3; ++k) { aukj = ad[k] * u[k + j * u_dim1]; if (k != *n) { aukj += ae[k] * u[k + 1 + j * u_dim1]; } if (k != 1) { aukj += ae[k - 1] * u[k - 1 + j * u_dim1]; } work[i__ + j * work_dim1] += u[k + i__ * u_dim1] * aukj; /* L20: */ } /* L30: */ } work[i__ + i__ * work_dim1] -= sd[i__]; if (*kband == 1) { if (i__ != 1) { work[i__ + (i__ - 1) * work_dim1] -= se[i__ - 1]; } if (i__ != *n) { work[i__ + (i__ + 1) * work_dim1] -= se[i__]; } } /* L40: */ } wnorm = slansy_("1", "L", m, &work[work_offset], m, &work[(*m + 1) * work_dim1 + 1]); if (anorm > wnorm) { result[1] = wnorm / anorm / (*m * ulp); } else { if (anorm < 1.f) { /* Computing MIN */ r__1 = wnorm, r__2 = *m * anorm; result[1] = dmin(r__1,r__2) / anorm / (*m * ulp); } else { /* Computing MIN */ r__1 = wnorm / anorm, r__2 = (real) (*m); result[1] = dmin(r__1,r__2) / (*m * ulp); } } /* Do Test 2 */ /* Compute U'U - I */ sgemm_("T", "N", m, m, n, &c_b12, &u[u_offset], ldu, &u[u_offset], ldu, & c_b13, &work[work_offset], m); i__1 = *m; for (j = 1; j <= i__1; ++j) { work[j + j * work_dim1] += -1.f; /* L50: */ } /* Computing MIN */ r__1 = (real) (*m), r__2 = slange_("1", m, m, &work[work_offset], m, & work[(*m + 1) * work_dim1 + 1]); result[2] = dmin(r__1,r__2) / (*m * ulp); return 0; /* End of SSTT22 */ } /* sstt22_ */