#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublereal c_b20 = 0.; static integer c__2 = 2; static doublereal c_b25 = 1.; static integer c__1 = 1; static doublereal c_b30 = -1.; /* Subroutine */ int dget22_(char *transa, char *transe, char *transw, integer *n, doublereal *a, integer *lda, doublereal *e, integer *lde, doublereal *wr, doublereal *wi, doublereal *work, doublereal *result) { /* System generated locals */ integer a_dim1, a_offset, e_dim1, e_offset, i__1, i__2; doublereal d__1, d__2, d__3, d__4; /* Local variables */ integer j; doublereal ulp; integer ince, jcol, jvec; doublereal unfl, wmat[4] /* was [2][2] */, temp1; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); integer iecol; extern logical lsame_(char *, char *); integer ipair; char norma[1]; doublereal anorm; char norme[1]; doublereal enorm; integer ierow; extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *); doublereal enrmin, enrmax; integer itrnse; doublereal errnrm; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGET22 does an eigenvector check. */ /* The basic test is: */ /* RESULT(1) = | A E - E W | / ( |A| |E| ulp ) */ /* using the 1-norm. It also tests the normalization of E: */ /* RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) */ /* j */ /* where E(j) is the j-th eigenvector, and m-norm is the max-norm of a */ /* vector. If an eigenvector is complex, as determined from WI(j) */ /* nonzero, then the max-norm of the vector ( er + i*ei ) is the maximum */ /* of */ /* |er(1)| + |ei(1)|, ... , |er(n)| + |ei(n)| */ /* W is a block diagonal matrix, with a 1 by 1 block for each real */ /* eigenvalue and a 2 by 2 block for each complex conjugate pair. */ /* If eigenvalues j and j+1 are a complex conjugate pair, so that */ /* WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the 2 by 2 */ /* block corresponding to the pair will be: */ /* ( wr wi ) */ /* ( -wi wr ) */ /* Such a block multiplying an n by 2 matrix ( ur ui ) on the right */ /* will be the same as multiplying ur + i*ui by wr + i*wi. */ /* To handle various schemes for storage of left eigenvectors, there are */ /* options to use A-transpose instead of A, E-transpose instead of E, */ /* and/or W-transpose instead of W. */ /* Arguments */ /* ========== */ /* TRANSA (input) CHARACTER*1 */ /* Specifies whether or not A is transposed. */ /* = 'N': No transpose */ /* = 'T': Transpose */ /* = 'C': Conjugate transpose (= Transpose) */ /* TRANSE (input) CHARACTER*1 */ /* Specifies whether or not E is transposed. */ /* = 'N': No transpose, eigenvectors are in columns of E */ /* = 'T': Transpose, eigenvectors are in rows of E */ /* = 'C': Conjugate transpose (= Transpose) */ /* TRANSW (input) CHARACTER*1 */ /* Specifies whether or not W is transposed. */ /* = 'N': No transpose */ /* = 'T': Transpose, use -WI(j) instead of WI(j) */ /* = 'C': Conjugate transpose, use -WI(j) instead of WI(j) */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* The matrix whose eigenvectors are in E. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* E (input) DOUBLE PRECISION array, dimension (LDE,N) */ /* The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors */ /* are stored in the columns of E, if TRANSE = 'T' or 'C', the */ /* eigenvectors are stored in the rows of E. */ /* LDE (input) INTEGER */ /* The leading dimension of the array E. LDE >= max(1,N). */ /* WR (input) DOUBLE PRECISION array, dimension (N) */ /* WI (input) DOUBLE PRECISION array, dimension (N) */ /* The real and imaginary parts of the eigenvalues of A. */ /* Purely real eigenvalues are indicated by WI(j) = 0. */ /* Complex conjugate pairs are indicated by WR(j)=WR(j+1) and */ /* WI(j) = - WI(j+1) non-zero; the real part is assumed to be */ /* stored in the j-th row/column and the imaginary part in */ /* the (j+1)-th row/column. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (N*(N+1)) */ /* RESULT (output) DOUBLE PRECISION array, dimension (2) */ /* RESULT(1) = | A E - E W | / ( |A| |E| ulp ) */ /* RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Initialize RESULT (in case N=0) */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; e_dim1 = *lde; e_offset = 1 + e_dim1; e -= e_offset; --wr; --wi; --work; --result; /* Function Body */ result[1] = 0.; result[2] = 0.; if (*n <= 0) { return 0; } unfl = dlamch_("Safe minimum"); ulp = dlamch_("Precision"); itrnse = 0; ince = 1; *(unsigned char *)norma = 'O'; *(unsigned char *)norme = 'O'; if (lsame_(transa, "T") || lsame_(transa, "C")) { *(unsigned char *)norma = 'I'; } if (lsame_(transe, "T") || lsame_(transe, "C")) { *(unsigned char *)norme = 'I'; itrnse = 1; ince = *lde; } /* Check normalization of E */ enrmin = 1. / ulp; enrmax = 0.; if (itrnse == 0) { /* Eigenvectors are column vectors. */ ipair = 0; i__1 = *n; for (jvec = 1; jvec <= i__1; ++jvec) { temp1 = 0.; if (ipair == 0 && jvec < *n && wi[jvec] != 0.) { ipair = 1; } if (ipair == 1) { /* Complex eigenvector */ i__2 = *n; for (j = 1; j <= i__2; ++j) { /* Computing MAX */ d__3 = temp1, d__4 = (d__1 = e[j + jvec * e_dim1], abs( d__1)) + (d__2 = e[j + (jvec + 1) * e_dim1], abs( d__2)); temp1 = max(d__3,d__4); /* L10: */ } enrmin = min(enrmin,temp1); enrmax = max(enrmax,temp1); ipair = 2; } else if (ipair == 2) { ipair = 0; } else { /* Real eigenvector */ i__2 = *n; for (j = 1; j <= i__2; ++j) { /* Computing MAX */ d__2 = temp1, d__3 = (d__1 = e[j + jvec * e_dim1], abs( d__1)); temp1 = max(d__2,d__3); /* L20: */ } enrmin = min(enrmin,temp1); enrmax = max(enrmax,temp1); ipair = 0; } /* L30: */ } } else { /* Eigenvectors are row vectors. */ i__1 = *n; for (jvec = 1; jvec <= i__1; ++jvec) { work[jvec] = 0.; /* L40: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { ipair = 0; i__2 = *n; for (jvec = 1; jvec <= i__2; ++jvec) { if (ipair == 0 && jvec < *n && wi[jvec] != 0.) { ipair = 1; } if (ipair == 1) { /* Computing MAX */ d__3 = work[jvec], d__4 = (d__1 = e[j + jvec * e_dim1], abs(d__1)) + (d__2 = e[j + (jvec + 1) * e_dim1], abs(d__2)); work[jvec] = max(d__3,d__4); work[jvec + 1] = work[jvec]; } else if (ipair == 2) { ipair = 0; } else { /* Computing MAX */ d__2 = work[jvec], d__3 = (d__1 = e[j + jvec * e_dim1], abs(d__1)); work[jvec] = max(d__2,d__3); ipair = 0; } /* L50: */ } /* L60: */ } i__1 = *n; for (jvec = 1; jvec <= i__1; ++jvec) { /* Computing MIN */ d__1 = enrmin, d__2 = work[jvec]; enrmin = min(d__1,d__2); /* Computing MAX */ d__1 = enrmax, d__2 = work[jvec]; enrmax = max(d__1,d__2); /* L70: */ } } /* Norm of A: */ /* Computing MAX */ d__1 = dlange_(norma, n, n, &a[a_offset], lda, &work[1]); anorm = max(d__1,unfl); /* Norm of E: */ /* Computing MAX */ d__1 = dlange_(norme, n, n, &e[e_offset], lde, &work[1]); enorm = max(d__1,ulp); /* Norm of error: */ /* Error = AE - EW */ dlaset_("Full", n, n, &c_b20, &c_b20, &work[1], n); ipair = 0; ierow = 1; iecol = 1; i__1 = *n; for (jcol = 1; jcol <= i__1; ++jcol) { if (itrnse == 1) { ierow = jcol; } else { iecol = jcol; } if (ipair == 0 && wi[jcol] != 0.) { ipair = 1; } if (ipair == 1) { wmat[0] = wr[jcol]; wmat[1] = -wi[jcol]; wmat[2] = wi[jcol]; wmat[3] = wr[jcol]; dgemm_(transe, transw, n, &c__2, &c__2, &c_b25, &e[ierow + iecol * e_dim1], lde, wmat, &c__2, &c_b20, &work[*n * (jcol - 1) + 1], n); ipair = 2; } else if (ipair == 2) { ipair = 0; } else { daxpy_(n, &wr[jcol], &e[ierow + iecol * e_dim1], &ince, &work[*n * (jcol - 1) + 1], &c__1); ipair = 0; } /* L80: */ } dgemm_(transa, transe, n, n, n, &c_b25, &a[a_offset], lda, &e[e_offset], lde, &c_b30, &work[1], n); errnrm = dlange_("One", n, n, &work[1], n, &work[*n * *n + 1]) / enorm; /* Compute RESULT(1) (avoiding under/overflow) */ if (anorm > errnrm) { result[1] = errnrm / anorm / ulp; } else { if (anorm < 1.) { result[1] = min(errnrm,anorm) / anorm / ulp; } else { /* Computing MIN */ d__1 = errnrm / anorm; result[1] = min(d__1,1.) / ulp; } } /* Compute RESULT(2) : the normalization error in E. */ /* Computing MAX */ d__3 = (d__1 = enrmax - 1., abs(d__1)), d__4 = (d__2 = enrmin - 1., abs( d__2)); result[2] = max(d__3,d__4) / ((doublereal) (*n) * ulp); return 0; /* End of DGET22 */ } /* dget22_ */