#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__1 = 1; /* Subroutine */ int chpt21_(integer *itype, char *uplo, integer *n, integer * kband, complex *ap, real *d__, real *e, complex *u, integer *ldu, complex *vp, complex *tau, complex *work, real *rwork, real *result) { /* System generated locals */ integer u_dim1, u_offset, i__1, i__2, i__3, i__4, i__5, i__6; real r__1, r__2; complex q__1, q__2, q__3; /* Local variables */ integer j, jp, jr, jp1, lap; real ulp; extern /* Subroutine */ int chpr_(char *, integer *, real *, complex *, integer *, complex *); real unfl; complex temp; extern /* Subroutine */ int chpr2_(char *, integer *, complex *, complex * , integer *, complex *, integer *, complex *), cgemm_( char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer *, complex *, integer *); extern logical lsame_(char *, char *); integer iinfo; real anorm; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *), chpmv_(char *, integer *, complex *, complex *, complex *, integer *, complex *, complex *, integer *); char cuplo[1]; complex vsave; extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, integer *, complex *, integer *); logical lower; real wnorm; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), clanhp_(char *, char *, integer *, complex *, real *), slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), cupmtr_(char *, char *, char *, integer *, integer *, complex *, complex *, complex *, integer *, complex *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CHPT21 generally checks a decomposition of the form */ /* A = U S U* */ /* where * means conjugate transpose, A is hermitian, U is */ /* unitary, and S is diagonal (if KBAND=0) or (real) symmetric */ /* tridiagonal (if KBAND=1). If ITYPE=1, then U is represented as */ /* a dense matrix, otherwise the U is expressed as a product of */ /* Householder transformations, whose vectors are stored in the */ /* array "V" and whose scaling constants are in "TAU"; we shall */ /* use the letter "V" to refer to the product of Householder */ /* transformations (which should be equal to U). */ /* Specifically, if ITYPE=1, then: */ /* RESULT(1) = | A - U S U* | / ( |A| n ulp ) *and* */ /* RESULT(2) = | I - UU* | / ( n ulp ) */ /* If ITYPE=2, then: */ /* RESULT(1) = | A - V S V* | / ( |A| n ulp ) */ /* If ITYPE=3, then: */ /* RESULT(1) = | I - UV* | / ( n ulp ) */ /* Packed storage means that, for example, if UPLO='U', then the columns */ /* of the upper triangle of A are stored one after another, so that */ /* A(1,j+1) immediately follows A(j,j) in the array AP. Similarly, if */ /* UPLO='L', then the columns of the lower triangle of A are stored one */ /* after another in AP, so that A(j+1,j+1) immediately follows A(n,j) */ /* in the array AP. This means that A(i,j) is stored in: */ /* AP( i + j*(j-1)/2 ) if UPLO='U' */ /* AP( i + (2*n-j)*(j-1)/2 ) if UPLO='L' */ /* The array VP bears the same relation to the matrix V that A does to */ /* AP. */ /* For ITYPE > 1, the transformation U is expressed as a product */ /* of Householder transformations: */ /* If UPLO='U', then V = H(n-1)...H(1), where */ /* H(j) = I - tau(j) v(j) v(j)* */ /* and the first j-1 elements of v(j) are stored in V(1:j-1,j+1), */ /* (i.e., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ), */ /* the j-th element is 1, and the last n-j elements are 0. */ /* If UPLO='L', then V = H(1)...H(n-1), where */ /* H(j) = I - tau(j) v(j) v(j)* */ /* and the first j elements of v(j) are 0, the (j+1)-st is 1, and the */ /* (j+2)-nd through n-th elements are stored in V(j+2:n,j) (i.e., */ /* in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) .) */ /* Arguments */ /* ========= */ /* ITYPE (input) INTEGER */ /* Specifies the type of tests to be performed. */ /* 1: U expressed as a dense unitary matrix: */ /* RESULT(1) = | A - U S U* | / ( |A| n ulp ) *and* */ /* RESULT(2) = | I - UU* | / ( n ulp ) */ /* 2: U expressed as a product V of Housholder transformations: */ /* RESULT(1) = | A - V S V* | / ( |A| n ulp ) */ /* 3: U expressed both as a dense unitary matrix and */ /* as a product of Housholder transformations: */ /* RESULT(1) = | I - UV* | / ( n ulp ) */ /* UPLO (input) CHARACTER */ /* If UPLO='U', the upper triangle of A and V will be used and */ /* the (strictly) lower triangle will not be referenced. */ /* If UPLO='L', the lower triangle of A and V will be used and */ /* the (strictly) upper triangle will not be referenced. */ /* N (input) INTEGER */ /* The size of the matrix. If it is zero, CHPT21 does nothing. */ /* It must be at least zero. */ /* KBAND (input) INTEGER */ /* The bandwidth of the matrix. It may only be zero or one. */ /* If zero, then S is diagonal, and E is not referenced. If */ /* one, then S is symmetric tri-diagonal. */ /* AP (input) COMPLEX array, dimension (N*(N+1)/2) */ /* The original (unfactored) matrix. It is assumed to be */ /* hermitian, and contains the columns of just the upper */ /* triangle (UPLO='U') or only the lower triangle (UPLO='L'), */ /* packed one after another. */ /* D (input) REAL array, dimension (N) */ /* The diagonal of the (symmetric tri-) diagonal matrix. */ /* E (input) REAL array, dimension (N) */ /* The off-diagonal of the (symmetric tri-) diagonal matrix. */ /* E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and */ /* (3,2) element, etc. */ /* Not referenced if KBAND=0. */ /* U (input) COMPLEX array, dimension (LDU, N) */ /* If ITYPE=1 or 3, this contains the unitary matrix in */ /* the decomposition, expressed as a dense matrix. If ITYPE=2, */ /* then it is not referenced. */ /* LDU (input) INTEGER */ /* The leading dimension of U. LDU must be at least N and */ /* at least 1. */ /* VP (input) REAL array, dimension (N*(N+1)/2) */ /* If ITYPE=2 or 3, the columns of this array contain the */ /* Householder vectors used to describe the unitary matrix */ /* in the decomposition, as described in purpose. */ /* *NOTE* If ITYPE=2 or 3, V is modified and restored. The */ /* subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U') */ /* is set to one, and later reset to its original value, during */ /* the course of the calculation. */ /* If ITYPE=1, then it is neither referenced nor modified. */ /* TAU (input) COMPLEX array, dimension (N) */ /* If ITYPE >= 2, then TAU(j) is the scalar factor of */ /* v(j) v(j)* in the Householder transformation H(j) of */ /* the product U = H(1)...H(n-2) */ /* If ITYPE < 2, then TAU is not referenced. */ /* WORK (workspace) COMPLEX array, dimension (N**2) */ /* Workspace. */ /* RWORK (workspace) REAL array, dimension (N) */ /* Workspace. */ /* RESULT (output) REAL array, dimension (2) */ /* The values computed by the two tests described above. The */ /* values are currently limited to 1/ulp, to avoid overflow. */ /* RESULT(1) is always modified. RESULT(2) is modified only */ /* if ITYPE=1. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Constants */ /* Parameter adjustments */ --ap; --d__; --e; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; --vp; --tau; --work; --rwork; --result; /* Function Body */ result[1] = 0.f; if (*itype == 1) { result[2] = 0.f; } if (*n <= 0) { return 0; } lap = *n * (*n + 1) / 2; if (lsame_(uplo, "U")) { lower = FALSE_; *(unsigned char *)cuplo = 'U'; } else { lower = TRUE_; *(unsigned char *)cuplo = 'L'; } unfl = slamch_("Safe minimum"); ulp = slamch_("Epsilon") * slamch_("Base"); /* Some Error Checks */ if (*itype < 1 || *itype > 3) { result[1] = 10.f / ulp; return 0; } /* Do Test 1 */ /* Norm of A: */ if (*itype == 3) { anorm = 1.f; } else { /* Computing MAX */ r__1 = clanhp_("1", cuplo, n, &ap[1], &rwork[1]) ; anorm = dmax(r__1,unfl); } /* Compute error matrix: */ if (*itype == 1) { /* ITYPE=1: error = A - U S U* */ claset_("Full", n, n, &c_b1, &c_b1, &work[1], n); ccopy_(&lap, &ap[1], &c__1, &work[1], &c__1); i__1 = *n; for (j = 1; j <= i__1; ++j) { r__1 = -d__[j]; chpr_(cuplo, n, &r__1, &u[j * u_dim1 + 1], &c__1, &work[1]); /* L10: */ } if (*n > 1 && *kband == 1) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = j; q__2.r = e[i__2], q__2.i = 0.f; q__1.r = -q__2.r, q__1.i = -q__2.i; chpr2_(cuplo, n, &q__1, &u[j * u_dim1 + 1], &c__1, &u[(j - 1) * u_dim1 + 1], &c__1, &work[1]); /* L20: */ } } wnorm = clanhp_("1", cuplo, n, &work[1], &rwork[1]); } else if (*itype == 2) { /* ITYPE=2: error = V S V* - A */ claset_("Full", n, n, &c_b1, &c_b1, &work[1], n); if (lower) { i__1 = lap; i__2 = *n; work[i__1].r = d__[i__2], work[i__1].i = 0.f; for (j = *n - 1; j >= 1; --j) { jp = ((*n << 1) - j) * (j - 1) / 2; jp1 = jp + *n - j; if (*kband == 1) { i__1 = jp + j + 1; i__2 = j; q__2.r = 1.f - tau[i__2].r, q__2.i = 0.f - tau[i__2].i; i__3 = j; q__1.r = e[i__3] * q__2.r, q__1.i = e[i__3] * q__2.i; work[i__1].r = q__1.r, work[i__1].i = q__1.i; i__1 = *n; for (jr = j + 2; jr <= i__1; ++jr) { i__2 = jp + jr; i__3 = j; q__3.r = -tau[i__3].r, q__3.i = -tau[i__3].i; i__4 = j; q__2.r = e[i__4] * q__3.r, q__2.i = e[i__4] * q__3.i; i__5 = jp + jr; q__1.r = q__2.r * vp[i__5].r - q__2.i * vp[i__5].i, q__1.i = q__2.r * vp[i__5].i + q__2.i * vp[ i__5].r; work[i__2].r = q__1.r, work[i__2].i = q__1.i; /* L30: */ } } i__1 = j; if (tau[i__1].r != 0.f || tau[i__1].i != 0.f) { i__1 = jp + j + 1; vsave.r = vp[i__1].r, vsave.i = vp[i__1].i; i__1 = jp + j + 1; vp[i__1].r = 1.f, vp[i__1].i = 0.f; i__1 = *n - j; chpmv_("L", &i__1, &c_b2, &work[jp1 + j + 1], &vp[jp + j + 1], &c__1, &c_b1, &work[lap + 1], &c__1); i__1 = j; q__2.r = tau[i__1].r * -.5f, q__2.i = tau[i__1].i * -.5f; i__2 = *n - j; cdotc_(&q__3, &i__2, &work[lap + 1], &c__1, &vp[jp + j + 1], &c__1); q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i = q__2.r * q__3.i + q__2.i * q__3.r; temp.r = q__1.r, temp.i = q__1.i; i__1 = *n - j; caxpy_(&i__1, &temp, &vp[jp + j + 1], &c__1, &work[lap + 1], &c__1); i__1 = *n - j; i__2 = j; q__1.r = -tau[i__2].r, q__1.i = -tau[i__2].i; chpr2_("L", &i__1, &q__1, &vp[jp + j + 1], &c__1, &work[ lap + 1], &c__1, &work[jp1 + j + 1]); i__1 = jp + j + 1; vp[i__1].r = vsave.r, vp[i__1].i = vsave.i; } i__1 = jp + j; i__2 = j; work[i__1].r = d__[i__2], work[i__1].i = 0.f; /* L40: */ } } else { work[1].r = d__[1], work[1].i = 0.f; i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { jp = j * (j - 1) / 2; jp1 = jp + j; if (*kband == 1) { i__2 = jp1 + j; i__3 = j; q__2.r = 1.f - tau[i__3].r, q__2.i = 0.f - tau[i__3].i; i__4 = j; q__1.r = e[i__4] * q__2.r, q__1.i = e[i__4] * q__2.i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; i__2 = j - 1; for (jr = 1; jr <= i__2; ++jr) { i__3 = jp1 + jr; i__4 = j; q__3.r = -tau[i__4].r, q__3.i = -tau[i__4].i; i__5 = j; q__2.r = e[i__5] * q__3.r, q__2.i = e[i__5] * q__3.i; i__6 = jp1 + jr; q__1.r = q__2.r * vp[i__6].r - q__2.i * vp[i__6].i, q__1.i = q__2.r * vp[i__6].i + q__2.i * vp[ i__6].r; work[i__3].r = q__1.r, work[i__3].i = q__1.i; /* L50: */ } } i__2 = j; if (tau[i__2].r != 0.f || tau[i__2].i != 0.f) { i__2 = jp1 + j; vsave.r = vp[i__2].r, vsave.i = vp[i__2].i; i__2 = jp1 + j; vp[i__2].r = 1.f, vp[i__2].i = 0.f; chpmv_("U", &j, &c_b2, &work[1], &vp[jp1 + 1], &c__1, & c_b1, &work[lap + 1], &c__1); i__2 = j; q__2.r = tau[i__2].r * -.5f, q__2.i = tau[i__2].i * -.5f; cdotc_(&q__3, &j, &work[lap + 1], &c__1, &vp[jp1 + 1], & c__1); q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i = q__2.r * q__3.i + q__2.i * q__3.r; temp.r = q__1.r, temp.i = q__1.i; caxpy_(&j, &temp, &vp[jp1 + 1], &c__1, &work[lap + 1], & c__1); i__2 = j; q__1.r = -tau[i__2].r, q__1.i = -tau[i__2].i; chpr2_("U", &j, &q__1, &vp[jp1 + 1], &c__1, &work[lap + 1] , &c__1, &work[1]); i__2 = jp1 + j; vp[i__2].r = vsave.r, vp[i__2].i = vsave.i; } i__2 = jp1 + j + 1; i__3 = j + 1; work[i__2].r = d__[i__3], work[i__2].i = 0.f; /* L60: */ } } i__1 = lap; for (j = 1; j <= i__1; ++j) { i__2 = j; i__3 = j; i__4 = j; q__1.r = work[i__3].r - ap[i__4].r, q__1.i = work[i__3].i - ap[ i__4].i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; /* L70: */ } wnorm = clanhp_("1", cuplo, n, &work[1], &rwork[1]); } else if (*itype == 3) { /* ITYPE=3: error = U V* - I */ if (*n < 2) { return 0; } clacpy_(" ", n, n, &u[u_offset], ldu, &work[1], n); /* Computing 2nd power */ i__1 = *n; cupmtr_("R", cuplo, "C", n, n, &vp[1], &tau[1], &work[1], n, &work[ i__1 * i__1 + 1], &iinfo); if (iinfo != 0) { result[1] = 10.f / ulp; return 0; } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = (*n + 1) * (j - 1) + 1; i__3 = (*n + 1) * (j - 1) + 1; q__1.r = work[i__3].r - 1.f, q__1.i = work[i__3].i - 0.f; work[i__2].r = q__1.r, work[i__2].i = q__1.i; /* L80: */ } wnorm = clange_("1", n, n, &work[1], n, &rwork[1]); } if (anorm > wnorm) { result[1] = wnorm / anorm / (*n * ulp); } else { if (anorm < 1.f) { /* Computing MIN */ r__1 = wnorm, r__2 = *n * anorm; result[1] = dmin(r__1,r__2) / anorm / (*n * ulp); } else { /* Computing MIN */ r__1 = wnorm / anorm, r__2 = (real) (*n); result[1] = dmin(r__1,r__2) / (*n * ulp); } } /* Do Test 2 */ /* Compute UU* - I */ if (*itype == 1) { cgemm_("N", "C", n, n, n, &c_b2, &u[u_offset], ldu, &u[u_offset], ldu, &c_b1, &work[1], n); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = (*n + 1) * (j - 1) + 1; i__3 = (*n + 1) * (j - 1) + 1; q__1.r = work[i__3].r - 1.f, q__1.i = work[i__3].i - 0.f; work[i__2].r = q__1.r, work[i__2].i = q__1.i; /* L90: */ } /* Computing MIN */ r__1 = clange_("1", n, n, &work[1], n, &rwork[1]), r__2 = ( real) (*n); result[2] = dmin(r__1,r__2) / (*n * ulp); } return 0; /* End of CHPT21 */ } /* chpt21_ */