#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__0 = 0; static integer c__4 = 4; static integer c__6 = 6; static real c_b38 = 1.f; static integer c__1 = 1; static real c_b48 = 0.f; static integer c__2 = 2; /* Subroutine */ int cdrvev_(integer *nsizes, integer *nn, integer *ntypes, logical *dotype, integer *iseed, real *thresh, integer *nounit, complex *a, integer *lda, complex *h__, complex *w, complex *w1, complex *vl, integer *ldvl, complex *vr, integer *ldvr, complex *lre, integer *ldlre, real *result, complex *work, integer *nwork, real * rwork, integer *iwork, integer *info) { /* Initialized data */ static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 }; static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 }; static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 }; static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 }; /* Format strings */ static char fmt_9993[] = "(\002 CDRVEV: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED=" "(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9999[] = "(/1x,a3,\002 -- Complex Eigenvalue-Eigenvect" "or \002,\002Decomposition Driver\002,/\002 Matrix types (see CDR" "VEV for details): \002)"; static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002 1=Zero mat" "rix. \002,\002 \002,\002 5=Diagonal: geom" "etr. spaced entries.\002,/\002 2=Identity matrix. " " \002,\002 6=Diagona\002,\002l: clustered entries.\002," "/\002 3=Transposed Jordan block. \002,\002 \002,\002 " " 7=Diagonal: large, evenly spaced.\002,/\002 \002,\0024=Diagona" "l: evenly spaced entries. \002,\002 8=Diagonal: s\002,\002ma" "ll, evenly spaced.\002)"; static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002" " 9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il" "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con" "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste" "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e." "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,a6," "/\002 12=Well-cond., random complex \002,a6,\002 \002,\002 17=" "Ill-cond., large rand. complx \002,a4,/\002 13=Ill-condi\002," "\002tioned, evenly spaced. \002,\002 18=Ill-cond., small ran" "d.\002,\002 complx \002,a4)"; static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries. " " \002,\002 21=Matrix \002,\002with small random entries.\002," "/\002 20=Matrix with large ran\002,\002dom entries. \002,/)"; static char fmt_9995[] = "(\002 Tests performed with test threshold =" "\002,f8.2,//\002 1 = | A VR - VR W | / ( n |A| ulp ) \002,/\002 " "2 = | conj-trans(A) VL - VL conj-trans(W) | /\002,\002 ( n |A| u" "lp ) \002,/\002 3 = | |VR(i)| - 1 | / ulp \002,/\002 4 = | |VL(i" ")| - 1 | / ulp \002,/\002 5 = 0 if W same no matter if VR or VL " "computed,\002,\002 1/ulp otherwise\002,/\002 6 = 0 if VR same no" " matter if VL computed,\002,\002 1/ulp otherwise\002,/\002 7 = " "0 if VL same no matter if VR computed,\002,\002 1/ulp otherwis" "e\002,/)"; static char fmt_9994[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed" "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)=" "\002,g10.3)"; /* System generated locals */ integer a_dim1, a_offset, h_dim1, h_offset, lre_dim1, lre_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3, i__4, i__5, i__6; real r__1, r__2, r__3, r__4, r__5; complex q__1; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double sqrt(doublereal); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); double c_abs(complex *), r_imag(complex *); /* Local variables */ integer j, n, jj; complex dum[1]; real res[2]; integer iwk; real ulp, vmx, cond; integer jcol; char path[3]; integer nmax; real unfl, ovfl, tnrm, vrmx, vtst; logical badnn; extern /* Subroutine */ int cget22_(char *, char *, char *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, real *, real *); integer nfail; extern /* Subroutine */ int cgeev_(char *, char *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *); integer imode, iinfo; real conds, anorm; integer jsize, nerrs, itype, jtype, ntest; real rtulp; extern doublereal scnrm2_(integer *, complex *, integer *); extern /* Subroutine */ int slabad_(real *, real *), clatme_(integer *, char *, integer *, complex *, integer *, real *, complex *, char * , char *, char *, char *, real *, integer *, real *, integer *, integer *, real *, complex *, integer *, complex *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *); integer idumma[1]; extern /* Subroutine */ int claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); integer ioldsd[4]; extern /* Subroutine */ int xerbla_(char *, integer *), clatmr_( integer *, integer *, char *, integer *, char *, complex *, integer *, real *, complex *, char *, char *, complex *, integer * , real *, complex *, integer *, real *, char *, integer *, integer *, integer *, real *, real *, char *, complex *, integer * , integer *, integer *), clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char *, complex *, integer *, complex *, integer *); integer ntestf; extern /* Subroutine */ int slasum_(char *, integer *, integer *, integer *); real ulpinv; integer nnwork; real rtulpi; integer mtypes, ntestt; /* Fortran I/O blocks */ static cilist io___31 = { 0, 0, 0, fmt_9993, 0 }; static cilist io___34 = { 0, 0, 0, fmt_9993, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9993, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9993, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9993, 0 }; static cilist io___47 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___48 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___49 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9994, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CDRVEV checks the nonsymmetric eigenvalue problem driver CGEEV. */ /* When CDRVEV is called, a number of matrix "sizes" ("n's") and a */ /* number of matrix "types" are specified. For each size ("n") */ /* and each type of matrix, one matrix will be generated and used */ /* to test the nonsymmetric eigenroutines. For each matrix, 7 */ /* tests will be performed: */ /* (1) | A * VR - VR * W | / ( n |A| ulp ) */ /* Here VR is the matrix of unit right eigenvectors. */ /* W is a diagonal matrix with diagonal entries W(j). */ /* (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) */ /* Here VL is the matrix of unit left eigenvectors, A**H is the */ /* conjugate-transpose of A, and W is as above. */ /* (3) | |VR(i)| - 1 | / ulp and whether largest component real */ /* VR(i) denotes the i-th column of VR. */ /* (4) | |VL(i)| - 1 | / ulp and whether largest component real */ /* VL(i) denotes the i-th column of VL. */ /* (5) W(full) = W(partial) */ /* W(full) denotes the eigenvalues computed when both VR and VL */ /* are also computed, and W(partial) denotes the eigenvalues */ /* computed when only W, only W and VR, or only W and VL are */ /* computed. */ /* (6) VR(full) = VR(partial) */ /* VR(full) denotes the right eigenvectors computed when both VR */ /* and VL are computed, and VR(partial) denotes the result */ /* when only VR is computed. */ /* (7) VL(full) = VL(partial) */ /* VL(full) denotes the left eigenvectors computed when both VR */ /* and VL are also computed, and VL(partial) denotes the result */ /* when only VL is computed. */ /* The "sizes" are specified by an array NN(1:NSIZES); the value of */ /* each element NN(j) specifies one size. */ /* The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */ /* if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */ /* Currently, the list of possible types is: */ /* (1) The zero matrix. */ /* (2) The identity matrix. */ /* (3) A (transposed) Jordan block, with 1's on the diagonal. */ /* (4) A diagonal matrix with evenly spaced entries */ /* 1, ..., ULP and random complex angles. */ /* (ULP = (first number larger than 1) - 1 ) */ /* (5) A diagonal matrix with geometrically spaced entries */ /* 1, ..., ULP and random complex angles. */ /* (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */ /* and random complex angles. */ /* (7) Same as (4), but multiplied by a constant near */ /* the overflow threshold */ /* (8) Same as (4), but multiplied by a constant near */ /* the underflow threshold */ /* (9) A matrix of the form U' T U, where U is unitary and */ /* T has evenly spaced entries 1, ..., ULP with random complex */ /* angles on the diagonal and random O(1) entries in the upper */ /* triangle. */ /* (10) A matrix of the form U' T U, where U is unitary and */ /* T has geometrically spaced entries 1, ..., ULP with random */ /* complex angles on the diagonal and random O(1) entries in */ /* the upper triangle. */ /* (11) A matrix of the form U' T U, where U is unitary and */ /* T has "clustered" entries 1, ULP,..., ULP with random */ /* complex angles on the diagonal and random O(1) entries in */ /* the upper triangle. */ /* (12) A matrix of the form U' T U, where U is unitary and */ /* T has complex eigenvalues randomly chosen from */ /* ULP < |z| < 1 and random O(1) entries in the upper */ /* triangle. */ /* (13) A matrix of the form X' T X, where X has condition */ /* SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */ /* with random complex angles on the diagonal and random O(1) */ /* entries in the upper triangle. */ /* (14) A matrix of the form X' T X, where X has condition */ /* SQRT( ULP ) and T has geometrically spaced entries */ /* 1, ..., ULP with random complex angles on the diagonal */ /* and random O(1) entries in the upper triangle. */ /* (15) A matrix of the form X' T X, where X has condition */ /* SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */ /* with random complex angles on the diagonal and random O(1) */ /* entries in the upper triangle. */ /* (16) A matrix of the form X' T X, where X has condition */ /* SQRT( ULP ) and T has complex eigenvalues randomly chosen */ /* from ULP < |z| < 1 and random O(1) entries in the upper */ /* triangle. */ /* (17) Same as (16), but multiplied by a constant */ /* near the overflow threshold */ /* (18) Same as (16), but multiplied by a constant */ /* near the underflow threshold */ /* (19) Nonsymmetric matrix with random entries chosen from |z| < 1 */ /* If N is at least 4, all entries in first two rows and last */ /* row, and first column and last two columns are zero. */ /* (20) Same as (19), but multiplied by a constant */ /* near the overflow threshold */ /* (21) Same as (19), but multiplied by a constant */ /* near the underflow threshold */ /* Arguments */ /* ========== */ /* NSIZES (input) INTEGER */ /* The number of sizes of matrices to use. If it is zero, */ /* CDRVEV does nothing. It must be at least zero. */ /* NN (input) INTEGER array, dimension (NSIZES) */ /* An array containing the sizes to be used for the matrices. */ /* Zero values will be skipped. The values must be at least */ /* zero. */ /* NTYPES (input) INTEGER */ /* The number of elements in DOTYPE. If it is zero, CDRVEV */ /* does nothing. It must be at least zero. If it is MAXTYP+1 */ /* and NSIZES is 1, then an additional type, MAXTYP+1 is */ /* defined, which is to use whatever matrix is in A. This */ /* is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */ /* DOTYPE(MAXTYP+1) is .TRUE. . */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* If DOTYPE(j) is .TRUE., then for each size in NN a */ /* matrix of that size and of type j will be generated. */ /* If NTYPES is smaller than the maximum number of types */ /* defined (PARAMETER MAXTYP), then types NTYPES+1 through */ /* MAXTYP will not be generated. If NTYPES is larger */ /* than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */ /* will be ignored. */ /* ISEED (input/output) INTEGER array, dimension (4) */ /* On entry ISEED specifies the seed of the random number */ /* generator. The array elements should be between 0 and 4095; */ /* if not they will be reduced mod 4096. Also, ISEED(4) must */ /* be odd. The random number generator uses a linear */ /* congruential sequence limited to small integers, and so */ /* should produce machine independent random numbers. The */ /* values of ISEED are changed on exit, and can be used in the */ /* next call to CDRVEV to continue the same random number */ /* sequence. */ /* THRESH (input) REAL */ /* A test will count as "failed" if the "error", computed as */ /* described above, exceeds THRESH. Note that the error */ /* is scaled to be O(1), so THRESH should be a reasonably */ /* small multiple of 1, e.g., 10 or 100. In particular, */ /* it should not depend on the precision (single vs. double) */ /* or the size of the matrix. It must be at least zero. */ /* NOUNIT (input) INTEGER */ /* The FORTRAN unit number for printing out error messages */ /* (e.g., if a routine returns INFO not equal to 0.) */ /* A (workspace) COMPLEX array, dimension (LDA, max(NN)) */ /* Used to hold the matrix whose eigenvalues are to be */ /* computed. On exit, A contains the last matrix actually used. */ /* LDA (input) INTEGER */ /* The leading dimension of A, and H. LDA must be at */ /* least 1 and at least max(NN). */ /* H (workspace) COMPLEX array, dimension (LDA, max(NN)) */ /* Another copy of the test matrix A, modified by CGEEV. */ /* W (workspace) COMPLEX array, dimension (max(NN)) */ /* The eigenvalues of A. On exit, W are the eigenvalues of */ /* the matrix in A. */ /* W1 (workspace) COMPLEX array, dimension (max(NN)) */ /* Like W, this array contains the eigenvalues of A, */ /* but those computed when CGEEV only computes a partial */ /* eigendecomposition, i.e. not the eigenvalues and left */ /* and right eigenvectors. */ /* VL (workspace) COMPLEX array, dimension (LDVL, max(NN)) */ /* VL holds the computed left eigenvectors. */ /* LDVL (input) INTEGER */ /* Leading dimension of VL. Must be at least max(1,max(NN)). */ /* VR (workspace) COMPLEX array, dimension (LDVR, max(NN)) */ /* VR holds the computed right eigenvectors. */ /* LDVR (input) INTEGER */ /* Leading dimension of VR. Must be at least max(1,max(NN)). */ /* LRE (workspace) COMPLEX array, dimension (LDLRE, max(NN)) */ /* LRE holds the computed right or left eigenvectors. */ /* LDLRE (input) INTEGER */ /* Leading dimension of LRE. Must be at least max(1,max(NN)). */ /* RESULT (output) REAL array, dimension (7) */ /* The values computed by the seven tests described above. */ /* The values are currently limited to 1/ulp, to avoid */ /* overflow. */ /* WORK (workspace) COMPLEX array, dimension (NWORK) */ /* NWORK (input) INTEGER */ /* The number of entries in WORK. This must be at least */ /* 5*NN(j)+2*NN(j)**2 for all j. */ /* RWORK (workspace) REAL array, dimension (2*max(NN)) */ /* IWORK (workspace) INTEGER array, dimension (max(NN)) */ /* INFO (output) INTEGER */ /* If 0, then everything ran OK. */ /* -1: NSIZES < 0 */ /* -2: Some NN(j) < 0 */ /* -3: NTYPES < 0 */ /* -6: THRESH < 0 */ /* -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). */ /* -14: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ). */ /* -16: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ). */ /* -18: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ). */ /* -21: NWORK too small. */ /* If CLATMR, CLATMS, CLATME or CGEEV returns an error code, */ /* the absolute value of it is returned. */ /* ----------------------------------------------------------------------- */ /* Some Local Variables and Parameters: */ /* ---- ----- --------- --- ---------- */ /* ZERO, ONE Real 0 and 1. */ /* MAXTYP The number of types defined. */ /* NMAX Largest value in NN. */ /* NERRS The number of tests which have exceeded THRESH */ /* COND, CONDS, */ /* IMODE Values to be passed to the matrix generators. */ /* ANORM Norm of A; passed to matrix generators. */ /* OVFL, UNFL Overflow and underflow thresholds. */ /* ULP, ULPINV Finest relative precision and its inverse. */ /* RTULP, RTULPI Square roots of the previous 4 values. */ /* The following four arrays decode JTYPE: */ /* KTYPE(j) The general type (1-10) for type "j". */ /* KMODE(j) The MODE value to be passed to the matrix */ /* generator for type "j". */ /* KMAGN(j) The order of magnitude ( O(1), */ /* O(overflow^(1/2) ), O(underflow^(1/2) ) */ /* KCONDS(j) Selectw whether CONDS is to be 1 or */ /* 1/sqrt(ulp). (0 means irrelevant.) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --nn; --dotype; --iseed; h_dim1 = *lda; h_offset = 1 + h_dim1; h__ -= h_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --w; --w1; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; lre_dim1 = *ldlre; lre_offset = 1 + lre_dim1; lre -= lre_offset; --result; --work; --rwork; --iwork; /* Function Body */ /* .. */ /* .. Executable Statements .. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "EV", (ftnlen)2, (ftnlen)2); /* Check for errors */ ntestt = 0; ntestf = 0; *info = 0; /* Important constants */ badnn = FALSE_; nmax = 0; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = nmax, i__3 = nn[j]; nmax = max(i__2,i__3); if (nn[j] < 0) { badnn = TRUE_; } /* L10: */ } /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badnn) { *info = -2; } else if (*ntypes < 0) { *info = -3; } else if (*thresh < 0.f) { *info = -6; } else if (*nounit <= 0) { *info = -7; } else if (*lda < 1 || *lda < nmax) { *info = -9; } else if (*ldvl < 1 || *ldvl < nmax) { *info = -14; } else if (*ldvr < 1 || *ldvr < nmax) { *info = -16; } else if (*ldlre < 1 || *ldlre < nmax) { *info = -28; } else /* if(complicated condition) */ { /* Computing 2nd power */ i__1 = nmax; if (nmax * 5 + (i__1 * i__1 << 1) > *nwork) { *info = -21; } } if (*info != 0) { i__1 = -(*info); xerbla_("CDRVEV", &i__1); return 0; } /* Quick return if nothing to do */ if (*nsizes == 0 || *ntypes == 0) { return 0; } /* More Important constants */ unfl = slamch_("Safe minimum"); ovfl = 1.f / unfl; slabad_(&unfl, &ovfl); ulp = slamch_("Precision"); ulpinv = 1.f / ulp; rtulp = sqrt(ulp); rtulpi = 1.f / rtulp; /* Loop over sizes, types */ nerrs = 0; i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { n = nn[jsize]; if (*nsizes != 1) { mtypes = min(21,*ntypes); } else { mtypes = min(22,*ntypes); } i__2 = mtypes; for (jtype = 1; jtype <= i__2; ++jtype) { if (! dotype[jtype]) { goto L260; } /* Save ISEED in case of an error. */ for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L20: */ } /* Compute "A" */ /* Control parameters: */ /* KMAGN KCONDS KMODE KTYPE */ /* =1 O(1) 1 clustered 1 zero */ /* =2 large large clustered 2 identity */ /* =3 small exponential Jordan */ /* =4 arithmetic diagonal, (w/ eigenvalues) */ /* =5 random log symmetric, w/ eigenvalues */ /* =6 random general, w/ eigenvalues */ /* =7 random diagonal */ /* =8 random symmetric */ /* =9 random general */ /* =10 random triangular */ if (mtypes > 21) { goto L90; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L30; case 2: goto L40; case 3: goto L50; } L30: anorm = 1.f; goto L60; L40: anorm = ovfl * ulp; goto L60; L50: anorm = unfl * ulpinv; goto L60; L60: claset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda); iinfo = 0; cond = ulpinv; /* Special Matrices -- Identity & Jordan block */ /* Zero */ if (itype == 1) { iinfo = 0; } else if (itype == 2) { /* Identity */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { i__4 = jcol + jcol * a_dim1; q__1.r = anorm, q__1.i = 0.f; a[i__4].r = q__1.r, a[i__4].i = q__1.i; /* L70: */ } } else if (itype == 3) { /* Jordan Block */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { i__4 = jcol + jcol * a_dim1; q__1.r = anorm, q__1.i = 0.f; a[i__4].r = q__1.r, a[i__4].i = q__1.i; if (jcol > 1) { i__4 = jcol + (jcol - 1) * a_dim1; a[i__4].r = 1.f, a[i__4].i = 0.f; } /* L80: */ } } else if (itype == 4) { /* Diagonal Matrix, [Eigen]values Specified */ clatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[ n + 1], &iinfo); } else if (itype == 5) { /* Hermitian, eigenvalues specified */ clatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], &iinfo); } else if (itype == 6) { /* General, eigenvalues specified */ if (kconds[jtype - 1] == 1) { conds = 1.f; } else if (kconds[jtype - 1] == 2) { conds = rtulpi; } else { conds = 0.f; } clatme_(&n, "D", &iseed[1], &work[1], &imode, &cond, &c_b2, " ", "T", "T", "T", &rwork[1], &c__4, &conds, &n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1], & iinfo); } else if (itype == 7) { /* Diagonal, random eigenvalues */ clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b38, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b38, &work[( n << 1) + 1], &c__1, &c_b38, "N", idumma, &c__0, & c__0, &c_b48, &anorm, "NO", &a[a_offset], lda, &iwork[ 1], &iinfo); } else if (itype == 8) { /* Symmetric, random eigenvalues */ clatmr_(&n, &n, "D", &iseed[1], "H", &work[1], &c__6, &c_b38, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b38, &work[( n << 1) + 1], &c__1, &c_b38, "N", idumma, &n, &n, & c_b48, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else if (itype == 9) { /* General, random eigenvalues */ clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b38, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b38, &work[( n << 1) + 1], &c__1, &c_b38, "N", idumma, &n, &n, & c_b48, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); if (n >= 4) { claset_("Full", &c__2, &n, &c_b1, &c_b1, &a[a_offset], lda); i__3 = n - 3; claset_("Full", &i__3, &c__1, &c_b1, &c_b1, &a[a_dim1 + 3] , lda); i__3 = n - 3; claset_("Full", &i__3, &c__2, &c_b1, &c_b1, &a[(n - 1) * a_dim1 + 3], lda); claset_("Full", &c__1, &n, &c_b1, &c_b1, &a[n + a_dim1], lda); } } else if (itype == 10) { /* Triangular, random eigenvalues */ clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b38, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b38, &work[( n << 1) + 1], &c__1, &c_b38, "N", idumma, &n, &c__0, & c_b48, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else { iinfo = 1; } if (iinfo != 0) { io___31.ciunit = *nounit; s_wsfe(&io___31); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); return 0; } L90: /* Test for minimal and generous workspace */ for (iwk = 1; iwk <= 2; ++iwk) { if (iwk == 1) { nnwork = n << 1; } else { /* Computing 2nd power */ i__3 = n; nnwork = n * 5 + (i__3 * i__3 << 1); } nnwork = max(nnwork,1); /* Initialize RESULT */ for (j = 1; j <= 7; ++j) { result[j] = -1.f; /* L100: */ } /* Compute eigenvalues and eigenvectors, and test them */ clacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda); cgeev_("V", "V", &n, &h__[h_offset], lda, &w[1], &vl[ vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1], & nnwork, &rwork[1], &iinfo); if (iinfo != 0) { result[1] = ulpinv; io___34.ciunit = *nounit; s_wsfe(&io___34); do_fio(&c__1, "CGEEV1", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); goto L220; } /* Do Test (1) */ cget22_("N", "N", "N", &n, &a[a_offset], lda, &vr[vr_offset], ldvr, &w[1], &work[1], &rwork[1], res); result[1] = res[0]; /* Do Test (2) */ cget22_("C", "N", "C", &n, &a[a_offset], lda, &vl[vl_offset], ldvl, &w[1], &work[1], &rwork[1], res); result[2] = res[0]; /* Do Test (3) */ i__3 = n; for (j = 1; j <= i__3; ++j) { tnrm = scnrm2_(&n, &vr[j * vr_dim1 + 1], &c__1); /* Computing MAX */ /* Computing MIN */ r__4 = ulpinv, r__5 = (r__1 = tnrm - 1.f, dabs(r__1)) / ulp; r__2 = result[3], r__3 = dmin(r__4,r__5); result[3] = dmax(r__2,r__3); vmx = 0.f; vrmx = 0.f; i__4 = n; for (jj = 1; jj <= i__4; ++jj) { vtst = c_abs(&vr[jj + j * vr_dim1]); if (vtst > vmx) { vmx = vtst; } i__5 = jj + j * vr_dim1; if (r_imag(&vr[jj + j * vr_dim1]) == 0.f && (r__1 = vr[i__5].r, dabs(r__1)) > vrmx) { i__6 = jj + j * vr_dim1; vrmx = (r__2 = vr[i__6].r, dabs(r__2)); } /* L110: */ } if (vrmx / vmx < 1.f - ulp * 2.f) { result[3] = ulpinv; } /* L120: */ } /* Do Test (4) */ i__3 = n; for (j = 1; j <= i__3; ++j) { tnrm = scnrm2_(&n, &vl[j * vl_dim1 + 1], &c__1); /* Computing MAX */ /* Computing MIN */ r__4 = ulpinv, r__5 = (r__1 = tnrm - 1.f, dabs(r__1)) / ulp; r__2 = result[4], r__3 = dmin(r__4,r__5); result[4] = dmax(r__2,r__3); vmx = 0.f; vrmx = 0.f; i__4 = n; for (jj = 1; jj <= i__4; ++jj) { vtst = c_abs(&vl[jj + j * vl_dim1]); if (vtst > vmx) { vmx = vtst; } i__5 = jj + j * vl_dim1; if (r_imag(&vl[jj + j * vl_dim1]) == 0.f && (r__1 = vl[i__5].r, dabs(r__1)) > vrmx) { i__6 = jj + j * vl_dim1; vrmx = (r__2 = vl[i__6].r, dabs(r__2)); } /* L130: */ } if (vrmx / vmx < 1.f - ulp * 2.f) { result[4] = ulpinv; } /* L140: */ } /* Compute eigenvalues only, and test them */ clacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda); cgeev_("N", "N", &n, &h__[h_offset], lda, &w1[1], dum, &c__1, dum, &c__1, &work[1], &nnwork, &rwork[1], &iinfo); if (iinfo != 0) { result[1] = ulpinv; io___42.ciunit = *nounit; s_wsfe(&io___42); do_fio(&c__1, "CGEEV2", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); goto L220; } /* Do Test (5) */ i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = j; i__5 = j; if (w[i__4].r != w1[i__5].r || w[i__4].i != w1[i__5].i) { result[5] = ulpinv; } /* L150: */ } /* Compute eigenvalues and right eigenvectors, and test them */ clacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda); cgeev_("N", "V", &n, &h__[h_offset], lda, &w1[1], dum, &c__1, &lre[lre_offset], ldlre, &work[1], &nnwork, &rwork[1], &iinfo); if (iinfo != 0) { result[1] = ulpinv; io___43.ciunit = *nounit; s_wsfe(&io___43); do_fio(&c__1, "CGEEV3", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); goto L220; } /* Do Test (5) again */ i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = j; i__5 = j; if (w[i__4].r != w1[i__5].r || w[i__4].i != w1[i__5].i) { result[5] = ulpinv; } /* L160: */ } /* Do Test (6) */ i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = n; for (jj = 1; jj <= i__4; ++jj) { i__5 = j + jj * vr_dim1; i__6 = j + jj * lre_dim1; if (vr[i__5].r != lre[i__6].r || vr[i__5].i != lre[ i__6].i) { result[6] = ulpinv; } /* L170: */ } /* L180: */ } /* Compute eigenvalues and left eigenvectors, and test them */ clacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda); cgeev_("V", "N", &n, &h__[h_offset], lda, &w1[1], &lre[ lre_offset], ldlre, dum, &c__1, &work[1], &nnwork, & rwork[1], &iinfo); if (iinfo != 0) { result[1] = ulpinv; io___44.ciunit = *nounit; s_wsfe(&io___44); do_fio(&c__1, "CGEEV4", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); goto L220; } /* Do Test (5) again */ i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = j; i__5 = j; if (w[i__4].r != w1[i__5].r || w[i__4].i != w1[i__5].i) { result[5] = ulpinv; } /* L190: */ } /* Do Test (7) */ i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = n; for (jj = 1; jj <= i__4; ++jj) { i__5 = j + jj * vl_dim1; i__6 = j + jj * lre_dim1; if (vl[i__5].r != lre[i__6].r || vl[i__5].i != lre[ i__6].i) { result[7] = ulpinv; } /* L200: */ } /* L210: */ } /* End of Loop -- Check for RESULT(j) > THRESH */ L220: ntest = 0; nfail = 0; for (j = 1; j <= 7; ++j) { if (result[j] >= 0.f) { ++ntest; } if (result[j] >= *thresh) { ++nfail; } /* L230: */ } if (nfail > 0) { ++ntestf; } if (ntestf == 1) { io___47.ciunit = *nounit; s_wsfe(&io___47); do_fio(&c__1, path, (ftnlen)3); e_wsfe(); io___48.ciunit = *nounit; s_wsfe(&io___48); e_wsfe(); io___49.ciunit = *nounit; s_wsfe(&io___49); e_wsfe(); io___50.ciunit = *nounit; s_wsfe(&io___50); e_wsfe(); io___51.ciunit = *nounit; s_wsfe(&io___51); do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real)); e_wsfe(); ntestf = 2; } for (j = 1; j <= 7; ++j) { if (result[j] >= *thresh) { io___52.ciunit = *nounit; s_wsfe(&io___52); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real) ); e_wsfe(); } /* L240: */ } nerrs += nfail; ntestt += ntest; /* L250: */ } L260: ; } /* L270: */ } /* Summary */ slasum_(path, nounit, &nerrs, &ntestt); return 0; /* End of CDRVEV */ } /* cdrvev_ */