#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int zpbequ_(char *uplo, integer *n, integer *kd, doublecomplex *ab, integer *ldab, doublereal *s, doublereal *scond, doublereal *amax, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j; doublereal smin; extern logical lsame_(char *, char *); logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZPBEQU computes row and column scalings intended to equilibrate a */ /* Hermitian positive definite band matrix A and reduce its condition */ /* number (with respect to the two-norm). S contains the scale factors, */ /* S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with */ /* elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This */ /* choice of S puts the condition number of B within a factor N of the */ /* smallest possible condition number over all possible diagonal */ /* scalings. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangular of A is stored; */ /* = 'L': Lower triangular of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ /* AB (input) COMPLEX*16 array, dimension (LDAB,N) */ /* The upper or lower triangle of the Hermitian band matrix A, */ /* stored in the first KD+1 rows of the array. The j-th column */ /* of A is stored in the j-th column of the array AB as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* LDAB (input) INTEGER */ /* The leading dimension of the array A. LDAB >= KD+1. */ /* S (output) DOUBLE PRECISION array, dimension (N) */ /* If INFO = 0, S contains the scale factors for A. */ /* SCOND (output) DOUBLE PRECISION */ /* If INFO = 0, S contains the ratio of the smallest S(i) to */ /* the largest S(i). If SCOND >= 0.1 and AMAX is neither too */ /* large nor too small, it is not worth scaling by S. */ /* AMAX (output) DOUBLE PRECISION */ /* Absolute value of largest matrix element. If AMAX is very */ /* close to overflow or very close to underflow, the matrix */ /* should be scaled. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = i, the i-th diagonal element is nonpositive. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --s; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kd < 0) { *info = -3; } else if (*ldab < *kd + 1) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("ZPBEQU", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { *scond = 1.; *amax = 0.; return 0; } if (upper) { j = *kd + 1; } else { j = 1; } /* Initialize SMIN and AMAX. */ i__1 = j + ab_dim1; s[1] = ab[i__1].r; smin = s[1]; *amax = s[1]; /* Find the minimum and maximum diagonal elements. */ i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { i__2 = j + i__ * ab_dim1; s[i__] = ab[i__2].r; /* Computing MIN */ d__1 = smin, d__2 = s[i__]; smin = min(d__1,d__2); /* Computing MAX */ d__1 = *amax, d__2 = s[i__]; *amax = max(d__1,d__2); /* L10: */ } if (smin <= 0.) { /* Find the first non-positive diagonal element and return. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (s[i__] <= 0.) { *info = i__; return 0; } /* L20: */ } } else { /* Set the scale factors to the reciprocals */ /* of the diagonal elements. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { s[i__] = 1. / sqrt(s[i__]); /* L30: */ } /* Compute SCOND = min(S(I)) / max(S(I)) */ *scond = sqrt(smin) / sqrt(*amax); } return 0; /* End of ZPBEQU */ } /* zpbequ_ */