#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int zlartg_(doublecomplex *f, doublecomplex *g, doublereal * cs, doublecomplex *sn, doublecomplex *r__) { /* System generated locals */ integer i__1; doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8, d__9, d__10; doublecomplex z__1, z__2, z__3; /* Builtin functions */ double log(doublereal), pow_di(doublereal *, integer *), d_imag( doublecomplex *), sqrt(doublereal); void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ doublereal d__; integer i__; doublereal f2, g2; doublecomplex ff; doublereal di, dr; doublecomplex fs, gs; doublereal f2s, g2s, eps, scale; integer count; doublereal safmn2; extern doublereal dlapy2_(doublereal *, doublereal *); doublereal safmx2; extern doublereal dlamch_(char *); doublereal safmin; /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZLARTG generates a plane rotation so that */ /* [ CS SN ] [ F ] [ R ] */ /* [ __ ] . [ ] = [ ] where CS**2 + |SN|**2 = 1. */ /* [ -SN CS ] [ G ] [ 0 ] */ /* This is a faster version of the BLAS1 routine ZROTG, except for */ /* the following differences: */ /* F and G are unchanged on return. */ /* If G=0, then CS=1 and SN=0. */ /* If F=0, then CS=0 and SN is chosen so that R is real. */ /* Arguments */ /* ========= */ /* F (input) COMPLEX*16 */ /* The first component of vector to be rotated. */ /* G (input) COMPLEX*16 */ /* The second component of vector to be rotated. */ /* CS (output) DOUBLE PRECISION */ /* The cosine of the rotation. */ /* SN (output) COMPLEX*16 */ /* The sine of the rotation. */ /* R (output) COMPLEX*16 */ /* The nonzero component of the rotated vector. */ /* Further Details */ /* ======= ======= */ /* 3-5-96 - Modified with a new algorithm by W. Kahan and J. Demmel */ /* This version has a few statements commented out for thread safety */ /* (machine parameters are computed on each entry). 10 feb 03, SJH. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* LOGICAL FIRST */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Save statement .. */ /* SAVE FIRST, SAFMX2, SAFMIN, SAFMN2 */ /* .. */ /* .. Data statements .. */ /* DATA FIRST / .TRUE. / */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* IF( FIRST ) THEN */ safmin = dlamch_("S"); eps = dlamch_("E"); d__1 = dlamch_("B"); i__1 = (integer) (log(safmin / eps) / log(dlamch_("B")) / 2.); safmn2 = pow_di(&d__1, &i__1); safmx2 = 1. / safmn2; /* FIRST = .FALSE. */ /* END IF */ /* Computing MAX */ /* Computing MAX */ d__7 = (d__1 = f->r, abs(d__1)), d__8 = (d__2 = d_imag(f), abs(d__2)); /* Computing MAX */ d__9 = (d__3 = g->r, abs(d__3)), d__10 = (d__4 = d_imag(g), abs(d__4)); d__5 = max(d__7,d__8), d__6 = max(d__9,d__10); scale = max(d__5,d__6); fs.r = f->r, fs.i = f->i; gs.r = g->r, gs.i = g->i; count = 0; if (scale >= safmx2) { L10: ++count; z__1.r = safmn2 * fs.r, z__1.i = safmn2 * fs.i; fs.r = z__1.r, fs.i = z__1.i; z__1.r = safmn2 * gs.r, z__1.i = safmn2 * gs.i; gs.r = z__1.r, gs.i = z__1.i; scale *= safmn2; if (scale >= safmx2) { goto L10; } } else if (scale <= safmn2) { if (g->r == 0. && g->i == 0.) { *cs = 1.; sn->r = 0., sn->i = 0.; r__->r = f->r, r__->i = f->i; return 0; } L20: --count; z__1.r = safmx2 * fs.r, z__1.i = safmx2 * fs.i; fs.r = z__1.r, fs.i = z__1.i; z__1.r = safmx2 * gs.r, z__1.i = safmx2 * gs.i; gs.r = z__1.r, gs.i = z__1.i; scale *= safmx2; if (scale <= safmn2) { goto L20; } } /* Computing 2nd power */ d__1 = fs.r; /* Computing 2nd power */ d__2 = d_imag(&fs); f2 = d__1 * d__1 + d__2 * d__2; /* Computing 2nd power */ d__1 = gs.r; /* Computing 2nd power */ d__2 = d_imag(&gs); g2 = d__1 * d__1 + d__2 * d__2; if (f2 <= max(g2,1.) * safmin) { /* This is a rare case: F is very small. */ if (f->r == 0. && f->i == 0.) { *cs = 0.; d__2 = g->r; d__3 = d_imag(g); d__1 = dlapy2_(&d__2, &d__3); r__->r = d__1, r__->i = 0.; /* Do complex/real division explicitly with two real divisions */ d__1 = gs.r; d__2 = d_imag(&gs); d__ = dlapy2_(&d__1, &d__2); d__1 = gs.r / d__; d__2 = -d_imag(&gs) / d__; z__1.r = d__1, z__1.i = d__2; sn->r = z__1.r, sn->i = z__1.i; return 0; } d__1 = fs.r; d__2 = d_imag(&fs); f2s = dlapy2_(&d__1, &d__2); /* G2 and G2S are accurate */ /* G2 is at least SAFMIN, and G2S is at least SAFMN2 */ g2s = sqrt(g2); /* Error in CS from underflow in F2S is at most */ /* UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS */ /* If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN, */ /* and so CS .lt. sqrt(SAFMIN) */ /* If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN */ /* and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS) */ /* Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S */ *cs = f2s / g2s; /* Make sure abs(FF) = 1 */ /* Do complex/real division explicitly with 2 real divisions */ /* Computing MAX */ d__3 = (d__1 = f->r, abs(d__1)), d__4 = (d__2 = d_imag(f), abs(d__2)); if (max(d__3,d__4) > 1.) { d__1 = f->r; d__2 = d_imag(f); d__ = dlapy2_(&d__1, &d__2); d__1 = f->r / d__; d__2 = d_imag(f) / d__; z__1.r = d__1, z__1.i = d__2; ff.r = z__1.r, ff.i = z__1.i; } else { dr = safmx2 * f->r; di = safmx2 * d_imag(f); d__ = dlapy2_(&dr, &di); d__1 = dr / d__; d__2 = di / d__; z__1.r = d__1, z__1.i = d__2; ff.r = z__1.r, ff.i = z__1.i; } d__1 = gs.r / g2s; d__2 = -d_imag(&gs) / g2s; z__2.r = d__1, z__2.i = d__2; z__1.r = ff.r * z__2.r - ff.i * z__2.i, z__1.i = ff.r * z__2.i + ff.i * z__2.r; sn->r = z__1.r, sn->i = z__1.i; z__2.r = *cs * f->r, z__2.i = *cs * f->i; z__3.r = sn->r * g->r - sn->i * g->i, z__3.i = sn->r * g->i + sn->i * g->r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; r__->r = z__1.r, r__->i = z__1.i; } else { /* This is the most common case. */ /* Neither F2 nor F2/G2 are less than SAFMIN */ /* F2S cannot overflow, and it is accurate */ f2s = sqrt(g2 / f2 + 1.); /* Do the F2S(real)*FS(complex) multiply with two real multiplies */ d__1 = f2s * fs.r; d__2 = f2s * d_imag(&fs); z__1.r = d__1, z__1.i = d__2; r__->r = z__1.r, r__->i = z__1.i; *cs = 1. / f2s; d__ = f2 + g2; /* Do complex/real division explicitly with two real divisions */ d__1 = r__->r / d__; d__2 = d_imag(r__) / d__; z__1.r = d__1, z__1.i = d__2; sn->r = z__1.r, sn->i = z__1.i; d_cnjg(&z__2, &gs); z__1.r = sn->r * z__2.r - sn->i * z__2.i, z__1.i = sn->r * z__2.i + sn->i * z__2.r; sn->r = z__1.r, sn->i = z__1.i; if (count != 0) { if (count > 0) { i__1 = count; for (i__ = 1; i__ <= i__1; ++i__) { z__1.r = safmx2 * r__->r, z__1.i = safmx2 * r__->i; r__->r = z__1.r, r__->i = z__1.i; /* L30: */ } } else { i__1 = -count; for (i__ = 1; i__ <= i__1; ++i__) { z__1.r = safmn2 * r__->r, z__1.i = safmn2 * r__->i; r__->r = z__1.r, r__->i = z__1.i; /* L40: */ } } } } return 0; /* End of ZLARTG */ } /* zlartg_ */