#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; doublereal zlanhb_(char *norm, char *uplo, integer *n, integer *k, doublecomplex *ab, integer *ldab, doublereal *work) { /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4; doublereal ret_val, d__1, d__2, d__3; /* Builtin functions */ double z_abs(doublecomplex *), sqrt(doublereal); /* Local variables */ integer i__, j, l; doublereal sum, absa, scale; extern logical lsame_(char *, char *); doublereal value; extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *, doublereal *, doublereal *); /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZLANHB returns the value of the one norm, or the Frobenius norm, or */ /* the infinity norm, or the element of largest absolute value of an */ /* n by n hermitian band matrix A, with k super-diagonals. */ /* Description */ /* =========== */ /* ZLANHB returns the value */ /* ZLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ /* ( */ /* ( norm1(A), NORM = '1', 'O' or 'o' */ /* ( */ /* ( normI(A), NORM = 'I' or 'i' */ /* ( */ /* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ /* where norm1 denotes the one norm of a matrix (maximum column sum), */ /* normI denotes the infinity norm of a matrix (maximum row sum) and */ /* normF denotes the Frobenius norm of a matrix (square root of sum of */ /* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies the value to be returned in ZLANHB as described */ /* above. */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* band matrix A is supplied. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. When N = 0, ZLANHB is */ /* set to zero. */ /* K (input) INTEGER */ /* The number of super-diagonals or sub-diagonals of the */ /* band matrix A. K >= 0. */ /* AB (input) COMPLEX*16 array, dimension (LDAB,N) */ /* The upper or lower triangle of the hermitian band matrix A, */ /* stored in the first K+1 rows of AB. The j-th column of A is */ /* stored in the j-th column of the array AB as follows: */ /* if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). */ /* Note that the imaginary parts of the diagonal elements need */ /* not be set and are assumed to be zero. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= K+1. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */ /* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */ /* WORK is not referenced. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --work; /* Function Body */ if (*n == 0) { value = 0.; } else if (lsame_(norm, "M")) { /* Find max(abs(A(i,j))). */ value = 0.; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = *k + 2 - j; i__3 = *k; for (i__ = max(i__2,1); i__ <= i__3; ++i__) { /* Computing MAX */ d__1 = value, d__2 = z_abs(&ab[i__ + j * ab_dim1]); value = max(d__1,d__2); /* L10: */ } /* Computing MAX */ i__3 = *k + 1 + j * ab_dim1; d__2 = value, d__3 = (d__1 = ab[i__3].r, abs(d__1)); value = max(d__2,d__3); /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__3 = j * ab_dim1 + 1; d__2 = value, d__3 = (d__1 = ab[i__3].r, abs(d__1)); value = max(d__2,d__3); /* Computing MIN */ i__2 = *n + 1 - j, i__4 = *k + 1; i__3 = min(i__2,i__4); for (i__ = 2; i__ <= i__3; ++i__) { /* Computing MAX */ d__1 = value, d__2 = z_abs(&ab[i__ + j * ab_dim1]); value = max(d__1,d__2); /* L30: */ } /* L40: */ } } } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') { /* Find normI(A) ( = norm1(A), since A is hermitian). */ value = 0.; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { sum = 0.; l = *k + 1 - j; /* Computing MAX */ i__3 = 1, i__2 = j - *k; i__4 = j - 1; for (i__ = max(i__3,i__2); i__ <= i__4; ++i__) { absa = z_abs(&ab[l + i__ + j * ab_dim1]); sum += absa; work[i__] += absa; /* L50: */ } i__4 = *k + 1 + j * ab_dim1; work[j] = sum + (d__1 = ab[i__4].r, abs(d__1)); /* L60: */ } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ d__1 = value, d__2 = work[i__]; value = max(d__1,d__2); /* L70: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 0.; /* L80: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__4 = j * ab_dim1 + 1; sum = work[j] + (d__1 = ab[i__4].r, abs(d__1)); l = 1 - j; /* Computing MIN */ i__3 = *n, i__2 = j + *k; i__4 = min(i__3,i__2); for (i__ = j + 1; i__ <= i__4; ++i__) { absa = z_abs(&ab[l + i__ + j * ab_dim1]); sum += absa; work[i__] += absa; /* L90: */ } value = max(value,sum); /* L100: */ } } } else if (lsame_(norm, "F") || lsame_(norm, "E")) { /* Find normF(A). */ scale = 0.; sum = 1.; if (*k > 0) { if (lsame_(uplo, "U")) { i__1 = *n; for (j = 2; j <= i__1; ++j) { /* Computing MIN */ i__3 = j - 1; i__4 = min(i__3,*k); /* Computing MAX */ i__2 = *k + 2 - j; zlassq_(&i__4, &ab[max(i__2, 1)+ j * ab_dim1], &c__1, & scale, &sum); /* L110: */ } l = *k + 1; } else { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__3 = *n - j; i__4 = min(i__3,*k); zlassq_(&i__4, &ab[j * ab_dim1 + 2], &c__1, &scale, &sum); /* L120: */ } l = 1; } sum *= 2; } else { l = 1; } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__4 = l + j * ab_dim1; if (ab[i__4].r != 0.) { i__4 = l + j * ab_dim1; absa = (d__1 = ab[i__4].r, abs(d__1)); if (scale < absa) { /* Computing 2nd power */ d__1 = scale / absa; sum = sum * (d__1 * d__1) + 1.; scale = absa; } else { /* Computing 2nd power */ d__1 = absa / scale; sum += d__1 * d__1; } } /* L130: */ } value = scale * sqrt(sum); } ret_val = value; return ret_val; /* End of ZLANHB */ } /* zlanhb_ */