#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static doublecomplex c_b2 = {.5,0.}; static integer c__1 = 1; static integer c_n1 = -1; static doublereal c_b18 = 1.; /* Subroutine */ int zhegst_(integer *itype, char *uplo, integer *n, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; doublecomplex z__1; /* Local variables */ integer k, kb, nb; extern logical lsame_(char *, char *); extern /* Subroutine */ int zhemm_(char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); logical upper; extern /* Subroutine */ int ztrmm_(char *, char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), ztrsm_(char *, char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), zhegs2_(integer *, char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zher2k_(char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZHEGST reduces a complex Hermitian-definite generalized */ /* eigenproblem to standard form. */ /* If ITYPE = 1, the problem is A*x = lambda*B*x, */ /* and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H) */ /* If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or */ /* B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L. */ /* B must have been previously factorized as U**H*U or L*L**H by ZPOTRF. */ /* Arguments */ /* ========= */ /* ITYPE (input) INTEGER */ /* = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H); */ /* = 2 or 3: compute U*A*U**H or L**H*A*L. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored and B is factored as */ /* U**H*U; */ /* = 'L': Lower triangle of A is stored and B is factored as */ /* L*L**H. */ /* N (input) INTEGER */ /* The order of the matrices A and B. N >= 0. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */ /* N-by-N upper triangular part of A contains the upper */ /* triangular part of the matrix A, and the strictly lower */ /* triangular part of A is not referenced. If UPLO = 'L', the */ /* leading N-by-N lower triangular part of A contains the lower */ /* triangular part of the matrix A, and the strictly upper */ /* triangular part of A is not referenced. */ /* On exit, if INFO = 0, the transformed matrix, stored in the */ /* same format as A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* B (input) COMPLEX*16 array, dimension (LDB,N) */ /* The triangular factor from the Cholesky factorization of B, */ /* as returned by ZPOTRF. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (*itype < 1 || *itype > 3) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("ZHEGST", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Determine the block size for this environment. */ nb = ilaenv_(&c__1, "ZHEGST", uplo, n, &c_n1, &c_n1, &c_n1); if (nb <= 1 || nb >= *n) { /* Use unblocked code */ zhegs2_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info); } else { /* Use blocked code */ if (*itype == 1) { if (upper) { /* Compute inv(U')*A*inv(U) */ i__1 = *n; i__2 = nb; for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) { /* Computing MIN */ i__3 = *n - k + 1; kb = min(i__3,nb); /* Update the upper triangle of A(k:n,k:n) */ zhegs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + k * b_dim1], ldb, info); if (k + kb <= *n) { i__3 = *n - k - kb + 1; ztrsm_("Left", uplo, "Conjugate transpose", "Non-unit" , &kb, &i__3, &c_b1, &b[k + k * b_dim1], ldb, &a[k + (k + kb) * a_dim1], lda); i__3 = *n - k - kb + 1; z__1.r = -.5, z__1.i = -0.; zhemm_("Left", uplo, &kb, &i__3, &z__1, &a[k + k * a_dim1], lda, &b[k + (k + kb) * b_dim1], ldb, &c_b1, &a[k + (k + kb) * a_dim1], lda); i__3 = *n - k - kb + 1; z__1.r = -1., z__1.i = -0.; zher2k_(uplo, "Conjugate transpose", &i__3, &kb, & z__1, &a[k + (k + kb) * a_dim1], lda, &b[k + ( k + kb) * b_dim1], ldb, &c_b18, &a[k + kb + ( k + kb) * a_dim1], lda) ; i__3 = *n - k - kb + 1; z__1.r = -.5, z__1.i = -0.; zhemm_("Left", uplo, &kb, &i__3, &z__1, &a[k + k * a_dim1], lda, &b[k + (k + kb) * b_dim1], ldb, &c_b1, &a[k + (k + kb) * a_dim1], lda); i__3 = *n - k - kb + 1; ztrsm_("Right", uplo, "No transpose", "Non-unit", &kb, &i__3, &c_b1, &b[k + kb + (k + kb) * b_dim1], ldb, &a[k + (k + kb) * a_dim1], lda); } /* L10: */ } } else { /* Compute inv(L)*A*inv(L') */ i__2 = *n; i__1 = nb; for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) { /* Computing MIN */ i__3 = *n - k + 1; kb = min(i__3,nb); /* Update the lower triangle of A(k:n,k:n) */ zhegs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + k * b_dim1], ldb, info); if (k + kb <= *n) { i__3 = *n - k - kb + 1; ztrsm_("Right", uplo, "Conjugate transpose", "Non-un" "it", &i__3, &kb, &c_b1, &b[k + k * b_dim1], ldb, &a[k + kb + k * a_dim1], lda); i__3 = *n - k - kb + 1; z__1.r = -.5, z__1.i = -0.; zhemm_("Right", uplo, &i__3, &kb, &z__1, &a[k + k * a_dim1], lda, &b[k + kb + k * b_dim1], ldb, & c_b1, &a[k + kb + k * a_dim1], lda); i__3 = *n - k - kb + 1; z__1.r = -1., z__1.i = -0.; zher2k_(uplo, "No transpose", &i__3, &kb, &z__1, &a[k + kb + k * a_dim1], lda, &b[k + kb + k * b_dim1], ldb, &c_b18, &a[k + kb + (k + kb) * a_dim1], lda); i__3 = *n - k - kb + 1; z__1.r = -.5, z__1.i = -0.; zhemm_("Right", uplo, &i__3, &kb, &z__1, &a[k + k * a_dim1], lda, &b[k + kb + k * b_dim1], ldb, & c_b1, &a[k + kb + k * a_dim1], lda); i__3 = *n - k - kb + 1; ztrsm_("Left", uplo, "No transpose", "Non-unit", & i__3, &kb, &c_b1, &b[k + kb + (k + kb) * b_dim1], ldb, &a[k + kb + k * a_dim1], lda); } /* L20: */ } } } else { if (upper) { /* Compute U*A*U' */ i__1 = *n; i__2 = nb; for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) { /* Computing MIN */ i__3 = *n - k + 1; kb = min(i__3,nb); /* Update the upper triangle of A(1:k+kb-1,1:k+kb-1) */ i__3 = k - 1; ztrmm_("Left", uplo, "No transpose", "Non-unit", &i__3, & kb, &c_b1, &b[b_offset], ldb, &a[k * a_dim1 + 1], lda); i__3 = k - 1; zhemm_("Right", uplo, &i__3, &kb, &c_b2, &a[k + k * a_dim1], lda, &b[k * b_dim1 + 1], ldb, &c_b1, &a[ k * a_dim1 + 1], lda); i__3 = k - 1; zher2k_(uplo, "No transpose", &i__3, &kb, &c_b1, &a[k * a_dim1 + 1], lda, &b[k * b_dim1 + 1], ldb, &c_b18, &a[a_offset], lda); i__3 = k - 1; zhemm_("Right", uplo, &i__3, &kb, &c_b2, &a[k + k * a_dim1], lda, &b[k * b_dim1 + 1], ldb, &c_b1, &a[ k * a_dim1 + 1], lda); i__3 = k - 1; ztrmm_("Right", uplo, "Conjugate transpose", "Non-unit", & i__3, &kb, &c_b1, &b[k + k * b_dim1], ldb, &a[k * a_dim1 + 1], lda); zhegs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + k * b_dim1], ldb, info); /* L30: */ } } else { /* Compute L'*A*L */ i__2 = *n; i__1 = nb; for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) { /* Computing MIN */ i__3 = *n - k + 1; kb = min(i__3,nb); /* Update the lower triangle of A(1:k+kb-1,1:k+kb-1) */ i__3 = k - 1; ztrmm_("Right", uplo, "No transpose", "Non-unit", &kb, & i__3, &c_b1, &b[b_offset], ldb, &a[k + a_dim1], lda); i__3 = k - 1; zhemm_("Left", uplo, &kb, &i__3, &c_b2, &a[k + k * a_dim1] , lda, &b[k + b_dim1], ldb, &c_b1, &a[k + a_dim1], lda); i__3 = k - 1; zher2k_(uplo, "Conjugate transpose", &i__3, &kb, &c_b1, & a[k + a_dim1], lda, &b[k + b_dim1], ldb, &c_b18, & a[a_offset], lda); i__3 = k - 1; zhemm_("Left", uplo, &kb, &i__3, &c_b2, &a[k + k * a_dim1] , lda, &b[k + b_dim1], ldb, &c_b1, &a[k + a_dim1], lda); i__3 = k - 1; ztrmm_("Left", uplo, "Conjugate transpose", "Non-unit", & kb, &i__3, &c_b1, &b[k + k * b_dim1], ldb, &a[k + a_dim1], lda); zhegs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + k * b_dim1], ldb, info); /* L40: */ } } } } return 0; /* End of ZHEGST */ } /* zhegst_ */