#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static real c_b19 = -1.f; /* Subroutine */ int stprfs_(char *uplo, char *trans, char *diag, integer *n, integer *nrhs, real *ap, real *b, integer *ldb, real *x, integer *ldx, real *ferr, real *berr, real *work, integer *iwork, integer *info) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3; real r__1, r__2, r__3; /* Local variables */ integer i__, j, k; real s; integer kc; real xk; integer nz; real eps; integer kase; real safe1, safe2; extern logical lsame_(char *, char *); integer isave[3]; logical upper; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), saxpy_(integer *, real *, real *, integer *, real *, integer *), stpmv_(char *, char *, char *, integer *, real *, real *, integer *), stpsv_(char *, char *, char *, integer *, real *, real *, integer *), slacn2_(integer *, real *, real *, integer *, real *, integer *, integer *); extern doublereal slamch_(char *); real safmin; extern /* Subroutine */ int xerbla_(char *, integer *); logical notran; char transt[1]; logical nounit; real lstres; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* STPRFS provides error bounds and backward error estimates for the */ /* solution to a system of linear equations with a triangular packed */ /* coefficient matrix. */ /* The solution matrix X must be computed by STPTRS or some other */ /* means before entering this routine. STPRFS does not do iterative */ /* refinement because doing so cannot improve the backward error. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': A is upper triangular; */ /* = 'L': A is lower triangular. */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ /* DIAG (input) CHARACTER*1 */ /* = 'N': A is non-unit triangular; */ /* = 'U': A is unit triangular. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* AP (input) REAL array, dimension (N*(N+1)/2) */ /* The upper or lower triangular matrix A, packed columnwise in */ /* a linear array. The j-th column of A is stored in the array */ /* AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */ /* If DIAG = 'U', the diagonal elements of A are not referenced */ /* and are assumed to be 1. */ /* B (input) REAL array, dimension (LDB,NRHS) */ /* The right hand side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (input) REAL array, dimension (LDX,NRHS) */ /* The solution matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* FERR (output) REAL array, dimension (NRHS) */ /* The estimated forward error bound for each solution vector */ /* X(j) (the j-th column of the solution matrix X). */ /* If XTRUE is the true solution corresponding to X(j), FERR(j) */ /* is an estimated upper bound for the magnitude of the largest */ /* element in (X(j) - XTRUE) divided by the magnitude of the */ /* largest element in X(j). The estimate is as reliable as */ /* the estimate for RCOND, and is almost always a slight */ /* overestimate of the true error. */ /* BERR (output) REAL array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector X(j) (i.e., the smallest relative change in */ /* any element of A or B that makes X(j) an exact solution). */ /* WORK (workspace) REAL array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --iwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); notran = lsame_(trans, "N"); nounit = lsame_(diag, "N"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (! notran && ! lsame_(trans, "T") && ! lsame_(trans, "C")) { *info = -2; } else if (! nounit && ! lsame_(diag, "U")) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*nrhs < 0) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -8; } else if (*ldx < max(1,*n)) { *info = -10; } if (*info != 0) { i__1 = -(*info); xerbla_("STPRFS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { ferr[j] = 0.f; berr[j] = 0.f; /* L10: */ } return 0; } if (notran) { *(unsigned char *)transt = 'T'; } else { *(unsigned char *)transt = 'N'; } /* NZ = maximum number of nonzero elements in each row of A, plus 1 */ nz = *n + 1; eps = slamch_("Epsilon"); safmin = slamch_("Safe minimum"); safe1 = nz * safmin; safe2 = safe1 / eps; /* Do for each right hand side */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { /* Compute residual R = B - op(A) * X, */ /* where op(A) = A or A', depending on TRANS. */ scopy_(n, &x[j * x_dim1 + 1], &c__1, &work[*n + 1], &c__1); stpmv_(uplo, trans, diag, n, &ap[1], &work[*n + 1], &c__1); saxpy_(n, &c_b19, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1); /* Compute componentwise relative backward error from formula */ /* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */ /* where abs(Z) is the componentwise absolute value of the matrix */ /* or vector Z. If the i-th component of the denominator is less */ /* than SAFE2, then SAFE1 is added to the i-th components of the */ /* numerator and denominator before dividing. */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[i__] = (r__1 = b[i__ + j * b_dim1], dabs(r__1)); /* L20: */ } if (notran) { /* Compute abs(A)*abs(X) + abs(B). */ if (upper) { kc = 1; if (nounit) { i__2 = *n; for (k = 1; k <= i__2; ++k) { xk = (r__1 = x[k + j * x_dim1], dabs(r__1)); i__3 = k; for (i__ = 1; i__ <= i__3; ++i__) { work[i__] += (r__1 = ap[kc + i__ - 1], dabs(r__1)) * xk; /* L30: */ } kc += k; /* L40: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { xk = (r__1 = x[k + j * x_dim1], dabs(r__1)); i__3 = k - 1; for (i__ = 1; i__ <= i__3; ++i__) { work[i__] += (r__1 = ap[kc + i__ - 1], dabs(r__1)) * xk; /* L50: */ } work[k] += xk; kc += k; /* L60: */ } } } else { kc = 1; if (nounit) { i__2 = *n; for (k = 1; k <= i__2; ++k) { xk = (r__1 = x[k + j * x_dim1], dabs(r__1)); i__3 = *n; for (i__ = k; i__ <= i__3; ++i__) { work[i__] += (r__1 = ap[kc + i__ - k], dabs(r__1)) * xk; /* L70: */ } kc = kc + *n - k + 1; /* L80: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { xk = (r__1 = x[k + j * x_dim1], dabs(r__1)); i__3 = *n; for (i__ = k + 1; i__ <= i__3; ++i__) { work[i__] += (r__1 = ap[kc + i__ - k], dabs(r__1)) * xk; /* L90: */ } work[k] += xk; kc = kc + *n - k + 1; /* L100: */ } } } } else { /* Compute abs(A')*abs(X) + abs(B). */ if (upper) { kc = 1; if (nounit) { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.f; i__3 = k; for (i__ = 1; i__ <= i__3; ++i__) { s += (r__1 = ap[kc + i__ - 1], dabs(r__1)) * ( r__2 = x[i__ + j * x_dim1], dabs(r__2)); /* L110: */ } work[k] += s; kc += k; /* L120: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = (r__1 = x[k + j * x_dim1], dabs(r__1)); i__3 = k - 1; for (i__ = 1; i__ <= i__3; ++i__) { s += (r__1 = ap[kc + i__ - 1], dabs(r__1)) * ( r__2 = x[i__ + j * x_dim1], dabs(r__2)); /* L130: */ } work[k] += s; kc += k; /* L140: */ } } } else { kc = 1; if (nounit) { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.f; i__3 = *n; for (i__ = k; i__ <= i__3; ++i__) { s += (r__1 = ap[kc + i__ - k], dabs(r__1)) * ( r__2 = x[i__ + j * x_dim1], dabs(r__2)); /* L150: */ } work[k] += s; kc = kc + *n - k + 1; /* L160: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = (r__1 = x[k + j * x_dim1], dabs(r__1)); i__3 = *n; for (i__ = k + 1; i__ <= i__3; ++i__) { s += (r__1 = ap[kc + i__ - k], dabs(r__1)) * ( r__2 = x[i__ + j * x_dim1], dabs(r__2)); /* L170: */ } work[k] += s; kc = kc + *n - k + 1; /* L180: */ } } } } s = 0.f; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { /* Computing MAX */ r__2 = s, r__3 = (r__1 = work[*n + i__], dabs(r__1)) / work[ i__]; s = dmax(r__2,r__3); } else { /* Computing MAX */ r__2 = s, r__3 = ((r__1 = work[*n + i__], dabs(r__1)) + safe1) / (work[i__] + safe1); s = dmax(r__2,r__3); } /* L190: */ } berr[j] = s; /* Bound error from formula */ /* norm(X - XTRUE) / norm(X) .le. FERR = */ /* norm( abs(inv(op(A)))* */ /* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */ /* where */ /* norm(Z) is the magnitude of the largest component of Z */ /* inv(op(A)) is the inverse of op(A) */ /* abs(Z) is the componentwise absolute value of the matrix or */ /* vector Z */ /* NZ is the maximum number of nonzeros in any row of A, plus 1 */ /* EPS is machine epsilon */ /* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */ /* is incremented by SAFE1 if the i-th component of */ /* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */ /* Use SLACN2 to estimate the infinity-norm of the matrix */ /* inv(op(A)) * diag(W), */ /* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] > safe2) { work[i__] = (r__1 = work[*n + i__], dabs(r__1)) + nz * eps * work[i__]; } else { work[i__] = (r__1 = work[*n + i__], dabs(r__1)) + nz * eps * work[i__] + safe1; } /* L200: */ } kase = 0; L210: slacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], & kase, isave); if (kase != 0) { if (kase == 1) { /* Multiply by diag(W)*inv(op(A)'). */ stpsv_(uplo, transt, diag, n, &ap[1], &work[*n + 1], &c__1); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L220: */ } } else { /* Multiply by inv(op(A))*diag(W). */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*n + i__] = work[i__] * work[*n + i__]; /* L230: */ } stpsv_(uplo, trans, diag, n, &ap[1], &work[*n + 1], &c__1); } goto L210; } /* Normalize error. */ lstres = 0.f; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ r__2 = lstres, r__3 = (r__1 = x[i__ + j * x_dim1], dabs(r__1)); lstres = dmax(r__2,r__3); /* L240: */ } if (lstres != 0.f) { ferr[j] /= lstres; } /* L250: */ } return 0; /* End of STPRFS */ } /* stprfs_ */