#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static real c_b6 = -1.f; static integer c__1 = 1; static real c_b27 = 1.f; /* Subroutine */ int ssygs2_(integer *itype, char *uplo, integer *n, real *a, integer *lda, real *b, integer *ldb, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2; real r__1; /* Local variables */ integer k; real ct, akk, bkk; extern /* Subroutine */ int ssyr2_(char *, integer *, real *, real *, integer *, real *, integer *, real *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); logical upper; extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, real *, integer *), strmv_(char *, char *, char *, integer *, real *, integer *, real *, integer *), strsv_(char *, char *, char *, integer *, real *, integer *, real *, integer *), xerbla_(char *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSYGS2 reduces a real symmetric-definite generalized eigenproblem */ /* to standard form. */ /* If ITYPE = 1, the problem is A*x = lambda*B*x, */ /* and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L') */ /* If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or */ /* B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L. */ /* B must have been previously factorized as U'*U or L*L' by SPOTRF. */ /* Arguments */ /* ========= */ /* ITYPE (input) INTEGER */ /* = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L'); */ /* = 2 or 3: compute U*A*U' or L'*A*L. */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* symmetric matrix A is stored, and how B has been factorized. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The order of the matrices A and B. N >= 0. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the symmetric matrix A. If UPLO = 'U', the leading */ /* n by n upper triangular part of A contains the upper */ /* triangular part of the matrix A, and the strictly lower */ /* triangular part of A is not referenced. If UPLO = 'L', the */ /* leading n by n lower triangular part of A contains the lower */ /* triangular part of the matrix A, and the strictly upper */ /* triangular part of A is not referenced. */ /* On exit, if INFO = 0, the transformed matrix, stored in the */ /* same format as A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* B (input) REAL array, dimension (LDB,N) */ /* The triangular factor from the Cholesky factorization of B, */ /* as returned by SPOTRF. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (*itype < 1 || *itype > 3) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("SSYGS2", &i__1); return 0; } if (*itype == 1) { if (upper) { /* Compute inv(U')*A*inv(U) */ i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Update the upper triangle of A(k:n,k:n) */ akk = a[k + k * a_dim1]; bkk = b[k + k * b_dim1]; /* Computing 2nd power */ r__1 = bkk; akk /= r__1 * r__1; a[k + k * a_dim1] = akk; if (k < *n) { i__2 = *n - k; r__1 = 1.f / bkk; sscal_(&i__2, &r__1, &a[k + (k + 1) * a_dim1], lda); ct = akk * -.5f; i__2 = *n - k; saxpy_(&i__2, &ct, &b[k + (k + 1) * b_dim1], ldb, &a[k + ( k + 1) * a_dim1], lda); i__2 = *n - k; ssyr2_(uplo, &i__2, &c_b6, &a[k + (k + 1) * a_dim1], lda, &b[k + (k + 1) * b_dim1], ldb, &a[k + 1 + (k + 1) * a_dim1], lda); i__2 = *n - k; saxpy_(&i__2, &ct, &b[k + (k + 1) * b_dim1], ldb, &a[k + ( k + 1) * a_dim1], lda); i__2 = *n - k; strsv_(uplo, "Transpose", "Non-unit", &i__2, &b[k + 1 + ( k + 1) * b_dim1], ldb, &a[k + (k + 1) * a_dim1], lda); } /* L10: */ } } else { /* Compute inv(L)*A*inv(L') */ i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Update the lower triangle of A(k:n,k:n) */ akk = a[k + k * a_dim1]; bkk = b[k + k * b_dim1]; /* Computing 2nd power */ r__1 = bkk; akk /= r__1 * r__1; a[k + k * a_dim1] = akk; if (k < *n) { i__2 = *n - k; r__1 = 1.f / bkk; sscal_(&i__2, &r__1, &a[k + 1 + k * a_dim1], &c__1); ct = akk * -.5f; i__2 = *n - k; saxpy_(&i__2, &ct, &b[k + 1 + k * b_dim1], &c__1, &a[k + 1 + k * a_dim1], &c__1); i__2 = *n - k; ssyr2_(uplo, &i__2, &c_b6, &a[k + 1 + k * a_dim1], &c__1, &b[k + 1 + k * b_dim1], &c__1, &a[k + 1 + (k + 1) * a_dim1], lda); i__2 = *n - k; saxpy_(&i__2, &ct, &b[k + 1 + k * b_dim1], &c__1, &a[k + 1 + k * a_dim1], &c__1); i__2 = *n - k; strsv_(uplo, "No transpose", "Non-unit", &i__2, &b[k + 1 + (k + 1) * b_dim1], ldb, &a[k + 1 + k * a_dim1], &c__1); } /* L20: */ } } } else { if (upper) { /* Compute U*A*U' */ i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Update the upper triangle of A(1:k,1:k) */ akk = a[k + k * a_dim1]; bkk = b[k + k * b_dim1]; i__2 = k - 1; strmv_(uplo, "No transpose", "Non-unit", &i__2, &b[b_offset], ldb, &a[k * a_dim1 + 1], &c__1); ct = akk * .5f; i__2 = k - 1; saxpy_(&i__2, &ct, &b[k * b_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1); i__2 = k - 1; ssyr2_(uplo, &i__2, &c_b27, &a[k * a_dim1 + 1], &c__1, &b[k * b_dim1 + 1], &c__1, &a[a_offset], lda); i__2 = k - 1; saxpy_(&i__2, &ct, &b[k * b_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1); i__2 = k - 1; sscal_(&i__2, &bkk, &a[k * a_dim1 + 1], &c__1); /* Computing 2nd power */ r__1 = bkk; a[k + k * a_dim1] = akk * (r__1 * r__1); /* L30: */ } } else { /* Compute L'*A*L */ i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Update the lower triangle of A(1:k,1:k) */ akk = a[k + k * a_dim1]; bkk = b[k + k * b_dim1]; i__2 = k - 1; strmv_(uplo, "Transpose", "Non-unit", &i__2, &b[b_offset], ldb, &a[k + a_dim1], lda); ct = akk * .5f; i__2 = k - 1; saxpy_(&i__2, &ct, &b[k + b_dim1], ldb, &a[k + a_dim1], lda); i__2 = k - 1; ssyr2_(uplo, &i__2, &c_b27, &a[k + a_dim1], lda, &b[k + b_dim1], ldb, &a[a_offset], lda); i__2 = k - 1; saxpy_(&i__2, &ct, &b[k + b_dim1], ldb, &a[k + a_dim1], lda); i__2 = k - 1; sscal_(&i__2, &bkk, &a[k + a_dim1], lda); /* Computing 2nd power */ r__1 = bkk; a[k + k * a_dim1] = akk * (r__1 * r__1); /* L40: */ } } } return 0; /* End of SSYGS2 */ } /* ssygs2_ */