#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__0 = 0; static real c_b17 = 1.f; /* Subroutine */ int ssyev_(char *jobz, char *uplo, integer *n, real *a, integer *lda, real *w, real *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; real r__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer nb; real eps; integer inde; real anrm; integer imax; real rmin, rmax, sigma; extern logical lsame_(char *, char *); integer iinfo; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); logical lower, wantz; integer iscale; extern doublereal slamch_(char *); real safmin; extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *); real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); integer indtau, indwrk; extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *); extern doublereal slansy_(char *, char *, integer *, real *, integer *, real *); integer llwork; real smlnum; integer lwkopt; logical lquery; extern /* Subroutine */ int sorgtr_(char *, integer *, real *, integer *, real *, real *, integer *, integer *), ssteqr_(char *, integer *, real *, real *, real *, integer *, real *, integer *), ssytrd_(char *, integer *, real *, integer *, real *, real *, real *, real *, integer *, integer *); /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSYEV computes all eigenvalues and, optionally, eigenvectors of a */ /* real symmetric matrix A. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) REAL array, dimension (LDA, N) */ /* On entry, the symmetric matrix A. If UPLO = 'U', the */ /* leading N-by-N upper triangular part of A contains the */ /* upper triangular part of the matrix A. If UPLO = 'L', */ /* the leading N-by-N lower triangular part of A contains */ /* the lower triangular part of the matrix A. */ /* On exit, if JOBZ = 'V', then if INFO = 0, A contains the */ /* orthonormal eigenvectors of the matrix A. */ /* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */ /* or the upper triangle (if UPLO='U') of A, including the */ /* diagonal, is destroyed. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* W (output) REAL array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The length of the array WORK. LWORK >= max(1,3*N-1). */ /* For optimal efficiency, LWORK >= (NB+2)*N, */ /* where NB is the blocksize for SSYTRD returned by ILAENV. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the algorithm failed to converge; i */ /* off-diagonal elements of an intermediate tridiagonal */ /* form did not converge to zero. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --w; --work; /* Function Body */ wantz = lsame_(jobz, "V"); lower = lsame_(uplo, "L"); lquery = *lwork == -1; *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lower || lsame_(uplo, "U"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } if (*info == 0) { nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1); /* Computing MAX */ i__1 = 1, i__2 = (nb + 2) * *n; lwkopt = max(i__1,i__2); work[1] = (real) lwkopt; /* Computing MAX */ i__1 = 1, i__2 = *n * 3 - 1; if (*lwork < max(i__1,i__2) && ! lquery) { *info = -8; } } if (*info != 0) { i__1 = -(*info); xerbla_("SSYEV ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { w[1] = a[a_dim1 + 1]; work[1] = 2.f; if (wantz) { a[a_dim1 + 1] = 1.f; } return 0; } /* Get machine constants. */ safmin = slamch_("Safe minimum"); eps = slamch_("Precision"); smlnum = safmin / eps; bignum = 1.f / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = slansy_("M", uplo, n, &a[a_offset], lda, &work[1]); iscale = 0; if (anrm > 0.f && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { slascl_(uplo, &c__0, &c__0, &c_b17, &sigma, n, n, &a[a_offset], lda, info); } /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */ inde = 1; indtau = inde + *n; indwrk = indtau + *n; llwork = *lwork - indwrk + 1; ssytrd_(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], & work[indwrk], &llwork, &iinfo); /* For eigenvalues only, call SSTERF. For eigenvectors, first call */ /* SORGTR to generate the orthogonal matrix, then call SSTEQR. */ if (! wantz) { ssterf_(n, &w[1], &work[inde], info); } else { sorgtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], & llwork, &iinfo); ssteqr_(jobz, n, &w[1], &work[inde], &a[a_offset], lda, &work[indtau], info); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *n; } else { imax = *info - 1; } r__1 = 1.f / sigma; sscal_(&imax, &r__1, &w[1], &c__1); } /* Set WORK(1) to optimal workspace size. */ work[1] = (real) lwkopt; return 0; /* End of SSYEV */ } /* ssyev_ */