#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; doublereal slansp_(char *norm, char *uplo, integer *n, real *ap, real *work) { /* System generated locals */ integer i__1, i__2; real ret_val, r__1, r__2, r__3; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, k; real sum, absa, scale; extern logical lsame_(char *, char *); real value; extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *, real *); /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLANSP returns the value of the one norm, or the Frobenius norm, or */ /* the infinity norm, or the element of largest absolute value of a */ /* real symmetric matrix A, supplied in packed form. */ /* Description */ /* =========== */ /* SLANSP returns the value */ /* SLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ /* ( */ /* ( norm1(A), NORM = '1', 'O' or 'o' */ /* ( */ /* ( normI(A), NORM = 'I' or 'i' */ /* ( */ /* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ /* where norm1 denotes the one norm of a matrix (maximum column sum), */ /* normI denotes the infinity norm of a matrix (maximum row sum) and */ /* normF denotes the Frobenius norm of a matrix (square root of sum of */ /* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies the value to be returned in SLANSP as described */ /* above. */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* symmetric matrix A is supplied. */ /* = 'U': Upper triangular part of A is supplied */ /* = 'L': Lower triangular part of A is supplied */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. When N = 0, SLANSP is */ /* set to zero. */ /* AP (input) REAL array, dimension (N*(N+1)/2) */ /* The upper or lower triangle of the symmetric matrix A, packed */ /* columnwise in a linear array. The j-th column of A is stored */ /* in the array AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ /* WORK (workspace) REAL array, dimension (MAX(1,LWORK)), */ /* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */ /* WORK is not referenced. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --work; --ap; /* Function Body */ if (*n == 0) { value = 0.f; } else if (lsame_(norm, "M")) { /* Find max(abs(A(i,j))). */ value = 0.f; if (lsame_(uplo, "U")) { k = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = k + j - 1; for (i__ = k; i__ <= i__2; ++i__) { /* Computing MAX */ r__2 = value, r__3 = (r__1 = ap[i__], dabs(r__1)); value = dmax(r__2,r__3); /* L10: */ } k += j; /* L20: */ } } else { k = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = k + *n - j; for (i__ = k; i__ <= i__2; ++i__) { /* Computing MAX */ r__2 = value, r__3 = (r__1 = ap[i__], dabs(r__1)); value = dmax(r__2,r__3); /* L30: */ } k = k + *n - j + 1; /* L40: */ } } } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') { /* Find normI(A) ( = norm1(A), since A is symmetric). */ value = 0.f; k = 1; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { sum = 0.f; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { absa = (r__1 = ap[k], dabs(r__1)); sum += absa; work[i__] += absa; ++k; /* L50: */ } work[j] = sum + (r__1 = ap[k], dabs(r__1)); ++k; /* L60: */ } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ r__1 = value, r__2 = work[i__]; value = dmax(r__1,r__2); /* L70: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 0.f; /* L80: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { sum = work[j] + (r__1 = ap[k], dabs(r__1)); ++k; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { absa = (r__1 = ap[k], dabs(r__1)); sum += absa; work[i__] += absa; ++k; /* L90: */ } value = dmax(value,sum); /* L100: */ } } } else if (lsame_(norm, "F") || lsame_(norm, "E")) { /* Find normF(A). */ scale = 0.f; sum = 1.f; k = 2; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 2; j <= i__1; ++j) { i__2 = j - 1; slassq_(&i__2, &ap[k], &c__1, &scale, &sum); k += j; /* L110: */ } } else { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = *n - j; slassq_(&i__2, &ap[k], &c__1, &scale, &sum); k = k + *n - j + 1; /* L120: */ } } sum *= 2; k = 1; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (ap[k] != 0.f) { absa = (r__1 = ap[k], dabs(r__1)); if (scale < absa) { /* Computing 2nd power */ r__1 = scale / absa; sum = sum * (r__1 * r__1) + 1.f; scale = absa; } else { /* Computing 2nd power */ r__1 = absa / scale; sum += r__1 * r__1; } } if (lsame_(uplo, "U")) { k = k + i__ + 1; } else { k = k + *n - i__ + 1; } /* L130: */ } value = scale * sqrt(sum); } ret_val = value; return ret_val; /* End of SLANSP */ } /* slansp_ */