#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int slags2_(logical *upper, real *a1, real *a2, real *a3, real *b1, real *b2, real *b3, real *csu, real *snu, real *csv, real * snv, real *csq, real *snq) { /* System generated locals */ real r__1; /* Local variables */ real a, b, c__, d__, r__, s1, s2, ua11, ua12, ua21, ua22, vb11, vb12, vb21, vb22, csl, csr, snl, snr, aua11, aua12, aua21, aua22, avb11, avb12, avb21, avb22, ua11r, ua22r, vb11r, vb22r; extern /* Subroutine */ int slasv2_(real *, real *, real *, real *, real * , real *, real *, real *, real *), slartg_(real *, real *, real *, real *, real *); /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such */ /* that if ( UPPER ) then */ /* U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) */ /* ( 0 A3 ) ( x x ) */ /* and */ /* V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) */ /* ( 0 B3 ) ( x x ) */ /* or if ( .NOT.UPPER ) then */ /* U'*A*Q = U'*( A1 0 )*Q = ( x x ) */ /* ( A2 A3 ) ( 0 x ) */ /* and */ /* V'*B*Q = V'*( B1 0 )*Q = ( x x ) */ /* ( B2 B3 ) ( 0 x ) */ /* The rows of the transformed A and B are parallel, where */ /* U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) */ /* ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) */ /* Z' denotes the transpose of Z. */ /* Arguments */ /* ========= */ /* UPPER (input) LOGICAL */ /* = .TRUE.: the input matrices A and B are upper triangular. */ /* = .FALSE.: the input matrices A and B are lower triangular. */ /* A1 (input) REAL */ /* A2 (input) REAL */ /* A3 (input) REAL */ /* On entry, A1, A2 and A3 are elements of the input 2-by-2 */ /* upper (lower) triangular matrix A. */ /* B1 (input) REAL */ /* B2 (input) REAL */ /* B3 (input) REAL */ /* On entry, B1, B2 and B3 are elements of the input 2-by-2 */ /* upper (lower) triangular matrix B. */ /* CSU (output) REAL */ /* SNU (output) REAL */ /* The desired orthogonal matrix U. */ /* CSV (output) REAL */ /* SNV (output) REAL */ /* The desired orthogonal matrix V. */ /* CSQ (output) REAL */ /* SNQ (output) REAL */ /* The desired orthogonal matrix Q. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ if (*upper) { /* Input matrices A and B are upper triangular matrices */ /* Form matrix C = A*adj(B) = ( a b ) */ /* ( 0 d ) */ a = *a1 * *b3; d__ = *a3 * *b1; b = *a2 * *b1 - *a1 * *b2; /* The SVD of real 2-by-2 triangular C */ /* ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 ) */ /* ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T ) */ slasv2_(&a, &b, &d__, &s1, &s2, &snr, &csr, &snl, &csl); if (dabs(csl) >= dabs(snl) || dabs(csr) >= dabs(snr)) { /* Compute the (1,1) and (1,2) elements of U'*A and V'*B, */ /* and (1,2) element of |U|'*|A| and |V|'*|B|. */ ua11r = csl * *a1; ua12 = csl * *a2 + snl * *a3; vb11r = csr * *b1; vb12 = csr * *b2 + snr * *b3; aua12 = dabs(csl) * dabs(*a2) + dabs(snl) * dabs(*a3); avb12 = dabs(csr) * dabs(*b2) + dabs(snr) * dabs(*b3); /* zero (1,2) elements of U'*A and V'*B */ if (dabs(ua11r) + dabs(ua12) != 0.f) { if (aua12 / (dabs(ua11r) + dabs(ua12)) <= avb12 / (dabs(vb11r) + dabs(vb12))) { r__1 = -ua11r; slartg_(&r__1, &ua12, csq, snq, &r__); } else { r__1 = -vb11r; slartg_(&r__1, &vb12, csq, snq, &r__); } } else { r__1 = -vb11r; slartg_(&r__1, &vb12, csq, snq, &r__); } *csu = csl; *snu = -snl; *csv = csr; *snv = -snr; } else { /* Compute the (2,1) and (2,2) elements of U'*A and V'*B, */ /* and (2,2) element of |U|'*|A| and |V|'*|B|. */ ua21 = -snl * *a1; ua22 = -snl * *a2 + csl * *a3; vb21 = -snr * *b1; vb22 = -snr * *b2 + csr * *b3; aua22 = dabs(snl) * dabs(*a2) + dabs(csl) * dabs(*a3); avb22 = dabs(snr) * dabs(*b2) + dabs(csr) * dabs(*b3); /* zero (2,2) elements of U'*A and V'*B, and then swap. */ if (dabs(ua21) + dabs(ua22) != 0.f) { if (aua22 / (dabs(ua21) + dabs(ua22)) <= avb22 / (dabs(vb21) + dabs(vb22))) { r__1 = -ua21; slartg_(&r__1, &ua22, csq, snq, &r__); } else { r__1 = -vb21; slartg_(&r__1, &vb22, csq, snq, &r__); } } else { r__1 = -vb21; slartg_(&r__1, &vb22, csq, snq, &r__); } *csu = snl; *snu = csl; *csv = snr; *snv = csr; } } else { /* Input matrices A and B are lower triangular matrices */ /* Form matrix C = A*adj(B) = ( a 0 ) */ /* ( c d ) */ a = *a1 * *b3; d__ = *a3 * *b1; c__ = *a2 * *b3 - *a3 * *b2; /* The SVD of real 2-by-2 triangular C */ /* ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 ) */ /* ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T ) */ slasv2_(&a, &c__, &d__, &s1, &s2, &snr, &csr, &snl, &csl); if (dabs(csr) >= dabs(snr) || dabs(csl) >= dabs(snl)) { /* Compute the (2,1) and (2,2) elements of U'*A and V'*B, */ /* and (2,1) element of |U|'*|A| and |V|'*|B|. */ ua21 = -snr * *a1 + csr * *a2; ua22r = csr * *a3; vb21 = -snl * *b1 + csl * *b2; vb22r = csl * *b3; aua21 = dabs(snr) * dabs(*a1) + dabs(csr) * dabs(*a2); avb21 = dabs(snl) * dabs(*b1) + dabs(csl) * dabs(*b2); /* zero (2,1) elements of U'*A and V'*B. */ if (dabs(ua21) + dabs(ua22r) != 0.f) { if (aua21 / (dabs(ua21) + dabs(ua22r)) <= avb21 / (dabs(vb21) + dabs(vb22r))) { slartg_(&ua22r, &ua21, csq, snq, &r__); } else { slartg_(&vb22r, &vb21, csq, snq, &r__); } } else { slartg_(&vb22r, &vb21, csq, snq, &r__); } *csu = csr; *snu = -snr; *csv = csl; *snv = -snl; } else { /* Compute the (1,1) and (1,2) elements of U'*A and V'*B, */ /* and (1,1) element of |U|'*|A| and |V|'*|B|. */ ua11 = csr * *a1 + snr * *a2; ua12 = snr * *a3; vb11 = csl * *b1 + snl * *b2; vb12 = snl * *b3; aua11 = dabs(csr) * dabs(*a1) + dabs(snr) * dabs(*a2); avb11 = dabs(csl) * dabs(*b1) + dabs(snl) * dabs(*b2); /* zero (1,1) elements of U'*A and V'*B, and then swap. */ if (dabs(ua11) + dabs(ua12) != 0.f) { if (aua11 / (dabs(ua11) + dabs(ua12)) <= avb11 / (dabs(vb11) + dabs(vb12))) { slartg_(&ua12, &ua11, csq, snq, &r__); } else { slartg_(&vb12, &vb11, csq, snq, &r__); } } else { slartg_(&vb12, &vb11, csq, snq, &r__); } *csu = snr; *snu = csr; *csv = snl; *snv = csl; } } return 0; /* End of SLAGS2 */ } /* slags2_ */