#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c__0 = 0; static integer c_n1 = -1; static real c_b42 = 0.f; static real c_b43 = 1.f; /* Subroutine */ int sggesx_(char *jobvsl, char *jobvsr, char *sort, L_fp selctg, char *sense, integer *n, real *a, integer *lda, real *b, integer *ldb, integer *sdim, real *alphar, real *alphai, real *beta, real *vsl, integer *ldvsl, real *vsr, integer *ldvsr, real *rconde, real *rcondv, real *work, integer *lwork, integer *iwork, integer * liwork, logical *bwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, vsr_dim1, vsr_offset, i__1, i__2; real r__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, ip; real pl, pr, dif[2]; integer ihi, ilo; real eps; integer ijob; real anrm, bnrm; integer ierr, itau, iwrk, lwrk; extern logical lsame_(char *, char *); integer ileft, icols; logical cursl, ilvsl, ilvsr; integer irows; logical lst2sl; extern /* Subroutine */ int slabad_(real *, real *), sggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, integer *), sggbal_(char *, integer *, real *, integer *, real *, integer *, integer *, integer *, real *, real *, real *, integer *); logical ilascl, ilbscl; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); real safmin; extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer * , real *, integer *, integer *); real safmax; extern /* Subroutine */ int xerbla_(char *, integer *); real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer ijobvl, iright; extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *); integer ijobvr; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); logical wantsb, wantse, lastsl; integer liwmin; real anrmto, bnrmto; integer minwrk, maxwrk; logical wantsn; real smlnum; extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real * , real *, real *, real *, integer *, real *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), sorgqr_(integer *, integer *, integer *, real *, integer *, real * , real *, integer *, integer *), stgsen_(integer *, logical *, logical *, logical *, integer *, real *, integer *, real *, integer *, real *, real *, real *, real *, integer *, real *, integer *, integer *, real *, real *, real *, real *, integer *, integer *, integer *, integer *); logical wantst, lquery, wantsv; extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *); /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* .. Function Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGGESX computes for a pair of N-by-N real nonsymmetric matrices */ /* (A,B), the generalized eigenvalues, the real Schur form (S,T), and, */ /* optionally, the left and/or right matrices of Schur vectors (VSL and */ /* VSR). This gives the generalized Schur factorization */ /* (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T ) */ /* Optionally, it also orders the eigenvalues so that a selected cluster */ /* of eigenvalues appears in the leading diagonal blocks of the upper */ /* quasi-triangular matrix S and the upper triangular matrix T; computes */ /* a reciprocal condition number for the average of the selected */ /* eigenvalues (RCONDE); and computes a reciprocal condition number for */ /* the right and left deflating subspaces corresponding to the selected */ /* eigenvalues (RCONDV). The leading columns of VSL and VSR then form */ /* an orthonormal basis for the corresponding left and right eigenspaces */ /* (deflating subspaces). */ /* A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */ /* or a ratio alpha/beta = w, such that A - w*B is singular. It is */ /* usually represented as the pair (alpha,beta), as there is a */ /* reasonable interpretation for beta=0 or for both being zero. */ /* A pair of matrices (S,T) is in generalized real Schur form if T is */ /* upper triangular with non-negative diagonal and S is block upper */ /* triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond */ /* to real generalized eigenvalues, while 2-by-2 blocks of S will be */ /* "standardized" by making the corresponding elements of T have the */ /* form: */ /* [ a 0 ] */ /* [ 0 b ] */ /* and the pair of corresponding 2-by-2 blocks in S and T will have a */ /* complex conjugate pair of generalized eigenvalues. */ /* Arguments */ /* ========= */ /* JOBVSL (input) CHARACTER*1 */ /* = 'N': do not compute the left Schur vectors; */ /* = 'V': compute the left Schur vectors. */ /* JOBVSR (input) CHARACTER*1 */ /* = 'N': do not compute the right Schur vectors; */ /* = 'V': compute the right Schur vectors. */ /* SORT (input) CHARACTER*1 */ /* Specifies whether or not to order the eigenvalues on the */ /* diagonal of the generalized Schur form. */ /* = 'N': Eigenvalues are not ordered; */ /* = 'S': Eigenvalues are ordered (see SELCTG). */ /* SELCTG (external procedure) LOGICAL FUNCTION of three REAL arguments */ /* SELCTG must be declared EXTERNAL in the calling subroutine. */ /* If SORT = 'N', SELCTG is not referenced. */ /* If SORT = 'S', SELCTG is used to select eigenvalues to sort */ /* to the top left of the Schur form. */ /* An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */ /* SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */ /* one of a complex conjugate pair of eigenvalues is selected, */ /* then both complex eigenvalues are selected. */ /* Note that a selected complex eigenvalue may no longer satisfy */ /* SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering, */ /* since ordering may change the value of complex eigenvalues */ /* (especially if the eigenvalue is ill-conditioned), in this */ /* case INFO is set to N+3. */ /* SENSE (input) CHARACTER*1 */ /* Determines which reciprocal condition numbers are computed. */ /* = 'N' : None are computed; */ /* = 'E' : Computed for average of selected eigenvalues only; */ /* = 'V' : Computed for selected deflating subspaces only; */ /* = 'B' : Computed for both. */ /* If SENSE = 'E', 'V', or 'B', SORT must equal 'S'. */ /* N (input) INTEGER */ /* The order of the matrices A, B, VSL, and VSR. N >= 0. */ /* A (input/output) REAL array, dimension (LDA, N) */ /* On entry, the first of the pair of matrices. */ /* On exit, A has been overwritten by its generalized Schur */ /* form S. */ /* LDA (input) INTEGER */ /* The leading dimension of A. LDA >= max(1,N). */ /* B (input/output) REAL array, dimension (LDB, N) */ /* On entry, the second of the pair of matrices. */ /* On exit, B has been overwritten by its generalized Schur */ /* form T. */ /* LDB (input) INTEGER */ /* The leading dimension of B. LDB >= max(1,N). */ /* SDIM (output) INTEGER */ /* If SORT = 'N', SDIM = 0. */ /* If SORT = 'S', SDIM = number of eigenvalues (after sorting) */ /* for which SELCTG is true. (Complex conjugate pairs for which */ /* SELCTG is true for either eigenvalue count as 2.) */ /* ALPHAR (output) REAL array, dimension (N) */ /* ALPHAI (output) REAL array, dimension (N) */ /* BETA (output) REAL array, dimension (N) */ /* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */ /* be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i */ /* and BETA(j),j=1,...,N are the diagonals of the complex Schur */ /* form (S,T) that would result if the 2-by-2 diagonal blocks of */ /* the real Schur form of (A,B) were further reduced to */ /* triangular form using 2-by-2 complex unitary transformations. */ /* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */ /* positive, then the j-th and (j+1)-st eigenvalues are a */ /* complex conjugate pair, with ALPHAI(j+1) negative. */ /* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */ /* may easily over- or underflow, and BETA(j) may even be zero. */ /* Thus, the user should avoid naively computing the ratio. */ /* However, ALPHAR and ALPHAI will be always less than and */ /* usually comparable with norm(A) in magnitude, and BETA always */ /* less than and usually comparable with norm(B). */ /* VSL (output) REAL array, dimension (LDVSL,N) */ /* If JOBVSL = 'V', VSL will contain the left Schur vectors. */ /* Not referenced if JOBVSL = 'N'. */ /* LDVSL (input) INTEGER */ /* The leading dimension of the matrix VSL. LDVSL >=1, and */ /* if JOBVSL = 'V', LDVSL >= N. */ /* VSR (output) REAL array, dimension (LDVSR,N) */ /* If JOBVSR = 'V', VSR will contain the right Schur vectors. */ /* Not referenced if JOBVSR = 'N'. */ /* LDVSR (input) INTEGER */ /* The leading dimension of the matrix VSR. LDVSR >= 1, and */ /* if JOBVSR = 'V', LDVSR >= N. */ /* RCONDE (output) REAL array, dimension ( 2 ) */ /* If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the */ /* reciprocal condition numbers for the average of the selected */ /* eigenvalues. */ /* Not referenced if SENSE = 'N' or 'V'. */ /* RCONDV (output) REAL array, dimension ( 2 ) */ /* If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the */ /* reciprocal condition numbers for the selected deflating */ /* subspaces. */ /* Not referenced if SENSE = 'N' or 'E'. */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B', */ /* LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else */ /* LWORK >= max( 8*N, 6*N+16 ). */ /* Note that 2*SDIM*(N-SDIM) <= N*N/2. */ /* Note also that an error is only returned if */ /* LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B' */ /* this may not be large enough. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the bound on the optimal size of the WORK */ /* array and the minimum size of the IWORK array, returns these */ /* values as the first entries of the WORK and IWORK arrays, and */ /* no error message related to LWORK or LIWORK is issued by */ /* XERBLA. */ /* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of the array IWORK. */ /* If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise */ /* LIWORK >= N+6. */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the bound on the optimal size of the */ /* WORK array and the minimum size of the IWORK array, returns */ /* these values as the first entries of the WORK and IWORK */ /* arrays, and no error message related to LWORK or LIWORK is */ /* issued by XERBLA. */ /* BWORK (workspace) LOGICAL array, dimension (N) */ /* Not referenced if SORT = 'N'. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* = 1,...,N: */ /* The QZ iteration failed. (A,B) are not in Schur */ /* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */ /* be correct for j=INFO+1,...,N. */ /* > N: =N+1: other than QZ iteration failed in SHGEQZ */ /* =N+2: after reordering, roundoff changed values of */ /* some complex eigenvalues so that leading */ /* eigenvalues in the Generalized Schur form no */ /* longer satisfy SELCTG=.TRUE. This could also */ /* be caused due to scaling. */ /* =N+3: reordering failed in STGSEN. */ /* Further details */ /* =============== */ /* An approximate (asymptotic) bound on the average absolute error of */ /* the selected eigenvalues is */ /* EPS * norm((A, B)) / RCONDE( 1 ). */ /* An approximate (asymptotic) bound on the maximum angular error in */ /* the computed deflating subspaces is */ /* EPS * norm((A, B)) / RCONDV( 2 ). */ /* See LAPACK User's Guide, section 4.11 for more information. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alphar; --alphai; --beta; vsl_dim1 = *ldvsl; vsl_offset = 1 + vsl_dim1; vsl -= vsl_offset; vsr_dim1 = *ldvsr; vsr_offset = 1 + vsr_dim1; vsr -= vsr_offset; --rconde; --rcondv; --work; --iwork; --bwork; /* Function Body */ if (lsame_(jobvsl, "N")) { ijobvl = 1; ilvsl = FALSE_; } else if (lsame_(jobvsl, "V")) { ijobvl = 2; ilvsl = TRUE_; } else { ijobvl = -1; ilvsl = FALSE_; } if (lsame_(jobvsr, "N")) { ijobvr = 1; ilvsr = FALSE_; } else if (lsame_(jobvsr, "V")) { ijobvr = 2; ilvsr = TRUE_; } else { ijobvr = -1; ilvsr = FALSE_; } wantst = lsame_(sort, "S"); wantsn = lsame_(sense, "N"); wantse = lsame_(sense, "E"); wantsv = lsame_(sense, "V"); wantsb = lsame_(sense, "B"); lquery = *lwork == -1 || *liwork == -1; if (wantsn) { ijob = 0; } else if (wantse) { ijob = 1; } else if (wantsv) { ijob = 2; } else if (wantsb) { ijob = 4; } /* Test the input arguments */ *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (! wantst && ! lsame_(sort, "N")) { *info = -3; } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && ! wantsn) { *info = -5; } else if (*n < 0) { *info = -6; } else if (*lda < max(1,*n)) { *info = -8; } else if (*ldb < max(1,*n)) { *info = -10; } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) { *info = -16; } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) { *info = -18; } /* Compute workspace */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of workspace needed at that point in the code, */ /* as well as the preferred amount for good performance. */ /* NB refers to the optimal block size for the immediately */ /* following subroutine, as returned by ILAENV.) */ if (*info == 0) { if (*n > 0) { /* Computing MAX */ i__1 = *n << 3, i__2 = *n * 6 + 16; minwrk = max(i__1,i__2); maxwrk = minwrk - *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, & c__1, n, &c__0); /* Computing MAX */ i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SORMQR", " ", n, &c__1, n, &c_n1); maxwrk = max(i__1,i__2); if (ilvsl) { /* Computing MAX */ i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SOR" "GQR", " ", n, &c__1, n, &c_n1); maxwrk = max(i__1,i__2); } lwrk = maxwrk; if (ijob >= 1) { /* Computing MAX */ i__1 = lwrk, i__2 = *n * *n / 2; lwrk = max(i__1,i__2); } } else { minwrk = 1; maxwrk = 1; lwrk = 1; } work[1] = (real) lwrk; if (wantsn || *n == 0) { liwmin = 1; } else { liwmin = *n + 6; } iwork[1] = liwmin; if (*lwork < minwrk && ! lquery) { *info = -22; } else if (*liwork < liwmin && ! lquery) { *info = -24; } } if (*info != 0) { i__1 = -(*info); xerbla_("SGGESX", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { *sdim = 0; return 0; } /* Get machine constants */ eps = slamch_("P"); safmin = slamch_("S"); safmax = 1.f / safmin; slabad_(&safmin, &safmax); smlnum = sqrt(safmin) / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]); ilascl = FALSE_; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, & ierr); } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]); ilbscl = FALSE_; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & ierr); } /* Permute the matrix to make it more nearly triangular */ /* (Workspace: need 6*N + 2*N for permutation parameters) */ ileft = 1; iright = *n + 1; iwrk = iright + *n; sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[ ileft], &work[iright], &work[iwrk], &ierr); /* Reduce B to triangular form (QR decomposition of B) */ /* (Workspace: need N, prefer N*NB) */ irows = ihi + 1 - ilo; icols = *n + 1 - ilo; itau = iwrk; iwrk = itau + irows; i__1 = *lwork + 1 - iwrk; sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ iwrk], &i__1, &ierr); /* Apply the orthogonal transformation to matrix A */ /* (Workspace: need N, prefer N*NB) */ i__1 = *lwork + 1 - iwrk; sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, & ierr); /* Initialize VSL */ /* (Workspace: need N, prefer N*NB) */ if (ilvsl) { slaset_("Full", n, n, &c_b42, &c_b43, &vsl[vsl_offset], ldvsl); if (irows > 1) { i__1 = irows - 1; i__2 = irows - 1; slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ ilo + 1 + ilo * vsl_dim1], ldvsl); } i__1 = *lwork + 1 - iwrk; sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, & work[itau], &work[iwrk], &i__1, &ierr); } /* Initialize VSR */ if (ilvsr) { slaset_("Full", n, n, &c_b42, &c_b43, &vsr[vsr_offset], ldvsr); } /* Reduce to generalized Hessenberg form */ /* (Workspace: none needed) */ sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr); *sdim = 0; /* Perform QZ algorithm, computing Schur vectors if desired */ /* (Workspace: need N) */ iwrk = itau; i__1 = *lwork + 1 - iwrk; shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset] , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr); if (ierr != 0) { if (ierr > 0 && ierr <= *n) { *info = ierr; } else if (ierr > *n && ierr <= *n << 1) { *info = ierr - *n; } else { *info = *n + 1; } goto L50; } /* Sort eigenvalues ALPHA/BETA and compute the reciprocal of */ /* condition number(s) */ /* (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) ) */ /* otherwise, need 8*(N+1) ) */ if (wantst) { /* Undo scaling on eigenvalues before SELCTGing */ if (ilascl) { slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &ierr); slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &ierr); } if (ilbscl) { slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &ierr); } /* Select eigenvalues */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]); /* L10: */ } /* Reorder eigenvalues, transform Generalized Schur vectors, and */ /* compute reciprocal condition numbers */ i__1 = *lwork - iwrk + 1; stgsen_(&ijob, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[ b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[ vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pl, &pr, dif, &work[iwrk], &i__1, &iwork[1], liwork, &ierr); if (ijob >= 1) { /* Computing MAX */ i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim); maxwrk = max(i__1,i__2); } if (ierr == -22) { /* not enough real workspace */ *info = -22; } else { if (ijob == 1 || ijob == 4) { rconde[1] = pl; rconde[2] = pr; } if (ijob == 2 || ijob == 4) { rcondv[1] = dif[0]; rcondv[2] = dif[1]; } if (ierr == 1) { *info = *n + 3; } } } /* Apply permutation to VSL and VSR */ /* (Workspace: none needed) */ if (ilvsl) { sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[ vsl_offset], ldvsl, &ierr); } if (ilvsr) { sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[ vsr_offset], ldvsr, &ierr); } /* Check if unscaling would cause over/underflow, if so, rescale */ /* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */ /* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */ if (ilascl) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (alphai[i__] != 0.f) { if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[ i__] > anrm / anrmto) { work[1] = (r__1 = a[i__ + i__ * a_dim1] / alphar[i__], dabs(r__1)); beta[i__] *= work[1]; alphar[i__] *= work[1]; alphai[i__] *= work[1]; } else if (alphai[i__] / safmax > anrmto / anrm || safmin / alphai[i__] > anrm / anrmto) { work[1] = (r__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[ i__], dabs(r__1)); beta[i__] *= work[1]; alphar[i__] *= work[1]; alphai[i__] *= work[1]; } } /* L20: */ } } if (ilbscl) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (alphai[i__] != 0.f) { if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__] > bnrm / bnrmto) { work[1] = (r__1 = b[i__ + i__ * b_dim1] / beta[i__], dabs( r__1)); beta[i__] *= work[1]; alphar[i__] *= work[1]; alphai[i__] *= work[1]; } } /* L25: */ } } /* Undo scaling */ if (ilascl) { slascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, & ierr); slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, & ierr); slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, & ierr); } if (ilbscl) { slascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & ierr); slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & ierr); } if (wantst) { /* Check if reordering is correct */ lastsl = TRUE_; lst2sl = TRUE_; *sdim = 0; ip = 0; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]); if (alphai[i__] == 0.f) { if (cursl) { ++(*sdim); } ip = 0; if (cursl && ! lastsl) { *info = *n + 2; } } else { if (ip == 1) { /* Last eigenvalue of conjugate pair */ cursl = cursl || lastsl; lastsl = cursl; if (cursl) { *sdim += 2; } ip = -1; if (cursl && ! lst2sl) { *info = *n + 2; } } else { /* First eigenvalue of conjugate pair */ ip = 1; } } lst2sl = lastsl; lastsl = cursl; /* L40: */ } } L50: work[1] = (real) maxwrk; iwork[1] = liwmin; return 0; /* End of SGGESX */ } /* sggesx_ */