#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static real c_b10 = -1.f; /* Subroutine */ int sgetc2_(integer *n, real *a, integer *lda, integer *ipiv, integer *jpiv, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; real r__1; /* Local variables */ integer i__, j, ip, jp; real eps; integer ipv, jpv; extern /* Subroutine */ int sger_(integer *, integer *, real *, real *, integer *, real *, integer *, real *, integer *); real smin, xmax; extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, integer *), slabad_(real *, real *); extern doublereal slamch_(char *); real bignum, smlnum; /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGETC2 computes an LU factorization with complete pivoting of the */ /* n-by-n matrix A. The factorization has the form A = P * L * U * Q, */ /* where P and Q are permutation matrices, L is lower triangular with */ /* unit diagonal elements and U is upper triangular. */ /* This is the Level 2 BLAS algorithm. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) REAL array, dimension (LDA, N) */ /* On entry, the n-by-n matrix A to be factored. */ /* On exit, the factors L and U from the factorization */ /* A = P*L*U*Q; the unit diagonal elements of L are not stored. */ /* If U(k, k) appears to be less than SMIN, U(k, k) is given the */ /* value of SMIN, i.e., giving a nonsingular perturbed system. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* IPIV (output) INTEGER array, dimension(N). */ /* The pivot indices; for 1 <= i <= N, row i of the */ /* matrix has been interchanged with row IPIV(i). */ /* JPIV (output) INTEGER array, dimension(N). */ /* The pivot indices; for 1 <= j <= N, column j of the */ /* matrix has been interchanged with column JPIV(j). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* > 0: if INFO = k, U(k, k) is likely to produce owerflow if */ /* we try to solve for x in Ax = b. So U is perturbed to */ /* avoid the overflow. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ /* Umea University, S-901 87 Umea, Sweden. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Set constants to control overflow */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; --jpiv; /* Function Body */ *info = 0; eps = slamch_("P"); smlnum = slamch_("S") / eps; bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Factorize A using complete pivoting. */ /* Set pivots less than SMIN to SMIN. */ i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { /* Find max element in matrix A */ xmax = 0.f; i__2 = *n; for (ip = i__; ip <= i__2; ++ip) { i__3 = *n; for (jp = i__; jp <= i__3; ++jp) { if ((r__1 = a[ip + jp * a_dim1], dabs(r__1)) >= xmax) { xmax = (r__1 = a[ip + jp * a_dim1], dabs(r__1)); ipv = ip; jpv = jp; } /* L10: */ } /* L20: */ } if (i__ == 1) { /* Computing MAX */ r__1 = eps * xmax; smin = dmax(r__1,smlnum); } /* Swap rows */ if (ipv != i__) { sswap_(n, &a[ipv + a_dim1], lda, &a[i__ + a_dim1], lda); } ipiv[i__] = ipv; /* Swap columns */ if (jpv != i__) { sswap_(n, &a[jpv * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], & c__1); } jpiv[i__] = jpv; /* Check for singularity */ if ((r__1 = a[i__ + i__ * a_dim1], dabs(r__1)) < smin) { *info = i__; a[i__ + i__ * a_dim1] = smin; } i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { a[j + i__ * a_dim1] /= a[i__ + i__ * a_dim1]; /* L30: */ } i__2 = *n - i__; i__3 = *n - i__; sger_(&i__2, &i__3, &c_b10, &a[i__ + 1 + i__ * a_dim1], &c__1, &a[i__ + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + (i__ + 1) * a_dim1], lda); /* L40: */ } if ((r__1 = a[*n + *n * a_dim1], dabs(r__1)) < smin) { *info = *n; a[*n + *n * a_dim1] = smin; } return 0; /* End of SGETC2 */ } /* sgetc2_ */