#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b8 = 1.; /* Subroutine */ int dtzrqf_(integer *m, integer *n, doublereal *a, integer * lda, doublereal *tau, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; doublereal d__1; /* Local variables */ integer i__, k, m1; extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), dgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), dlarfg_( integer *, doublereal *, doublereal *, integer *, doublereal *), xerbla_(char *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* This routine is deprecated and has been replaced by routine DTZRZF. */ /* DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A */ /* to upper triangular form by means of orthogonal transformations. */ /* The upper trapezoidal matrix A is factored as */ /* A = ( R 0 ) * Z, */ /* where Z is an N-by-N orthogonal matrix and R is an M-by-M upper */ /* triangular matrix. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= M. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the leading M-by-N upper trapezoidal part of the */ /* array A must contain the matrix to be factorized. */ /* On exit, the leading M-by-M upper triangular part of A */ /* contains the upper triangular matrix R, and elements M+1 to */ /* N of the first M rows of A, with the array TAU, represent the */ /* orthogonal matrix Z as a product of M elementary reflectors. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAU (output) DOUBLE PRECISION array, dimension (M) */ /* The scalar factors of the elementary reflectors. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* The factorization is obtained by Householder's method. The kth */ /* transformation matrix, Z( k ), which is used to introduce zeros into */ /* the ( m - k + 1 )th row of A, is given in the form */ /* Z( k ) = ( I 0 ), */ /* ( 0 T( k ) ) */ /* where */ /* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */ /* ( 0 ) */ /* ( z( k ) ) */ /* tau is a scalar and z( k ) is an ( n - m ) element vector. */ /* tau and z( k ) are chosen to annihilate the elements of the kth row */ /* of X. */ /* The scalar tau is returned in the kth element of TAU and the vector */ /* u( k ) in the kth row of A, such that the elements of z( k ) are */ /* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */ /* the upper triangular part of A. */ /* Z is given by */ /* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < *m) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("DTZRQF", &i__1); return 0; } /* Perform the factorization. */ if (*m == 0) { return 0; } if (*m == *n) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tau[i__] = 0.; /* L10: */ } } else { /* Computing MIN */ i__1 = *m + 1; m1 = min(i__1,*n); for (k = *m; k >= 1; --k) { /* Use a Householder reflection to zero the kth row of A. */ /* First set up the reflection. */ i__1 = *n - *m + 1; dlarfg_(&i__1, &a[k + k * a_dim1], &a[k + m1 * a_dim1], lda, &tau[ k]); if (tau[k] != 0. && k > 1) { /* We now perform the operation A := A*P( k ). */ /* Use the first ( k - 1 ) elements of TAU to store a( k ), */ /* where a( k ) consists of the first ( k - 1 ) elements of */ /* the kth column of A. Also let B denote the first */ /* ( k - 1 ) rows of the last ( n - m ) columns of A. */ i__1 = k - 1; dcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1); /* Form w = a( k ) + B*z( k ) in TAU. */ i__1 = k - 1; i__2 = *n - *m; dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[m1 * a_dim1 + 1], lda, &a[k + m1 * a_dim1], lda, &c_b8, &tau[1], & c__1); /* Now form a( k ) := a( k ) - tau*w */ /* and B := B - tau*w*z( k )'. */ i__1 = k - 1; d__1 = -tau[k]; daxpy_(&i__1, &d__1, &tau[1], &c__1, &a[k * a_dim1 + 1], & c__1); i__1 = k - 1; i__2 = *n - *m; d__1 = -tau[k]; dger_(&i__1, &i__2, &d__1, &tau[1], &c__1, &a[k + m1 * a_dim1] , lda, &a[m1 * a_dim1 + 1], lda); } /* L20: */ } } return 0; /* End of DTZRQF */ } /* dtzrqf_ */