#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static doublereal c_b16 = 1.; /* Subroutine */ int dsygv_(integer *itype, char *jobz, char *uplo, integer * n, doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *w, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2; /* Local variables */ integer nb, neig; extern logical lsame_(char *, char *); extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); char trans[1]; extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); logical upper; extern /* Subroutine */ int dsyev_(char *, char *, integer *, doublereal * , integer *, doublereal *, doublereal *, integer *, integer *); logical wantz; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int dpotrf_(char *, integer *, doublereal *, integer *, integer *); integer lwkmin; extern /* Subroutine */ int dsygst_(integer *, char *, integer *, doublereal *, integer *, doublereal *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSYGV computes all the eigenvalues, and optionally, the eigenvectors */ /* of a real generalized symmetric-definite eigenproblem, of the form */ /* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. */ /* Here A and B are assumed to be symmetric and B is also */ /* positive definite. */ /* Arguments */ /* ========= */ /* ITYPE (input) INTEGER */ /* Specifies the problem type to be solved: */ /* = 1: A*x = (lambda)*B*x */ /* = 2: A*B*x = (lambda)*x */ /* = 3: B*A*x = (lambda)*x */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangles of A and B are stored; */ /* = 'L': Lower triangles of A and B are stored. */ /* N (input) INTEGER */ /* The order of the matrices A and B. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */ /* On entry, the symmetric matrix A. If UPLO = 'U', the */ /* leading N-by-N upper triangular part of A contains the */ /* upper triangular part of the matrix A. If UPLO = 'L', */ /* the leading N-by-N lower triangular part of A contains */ /* the lower triangular part of the matrix A. */ /* On exit, if JOBZ = 'V', then if INFO = 0, A contains the */ /* matrix Z of eigenvectors. The eigenvectors are normalized */ /* as follows: */ /* if ITYPE = 1 or 2, Z**T*B*Z = I; */ /* if ITYPE = 3, Z**T*inv(B)*Z = I. */ /* If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') */ /* or the lower triangle (if UPLO='L') of A, including the */ /* diagonal, is destroyed. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */ /* On entry, the symmetric positive definite matrix B. */ /* If UPLO = 'U', the leading N-by-N upper triangular part of B */ /* contains the upper triangular part of the matrix B. */ /* If UPLO = 'L', the leading N-by-N lower triangular part of B */ /* contains the lower triangular part of the matrix B. */ /* On exit, if INFO <= N, the part of B containing the matrix is */ /* overwritten by the triangular factor U or L from the Cholesky */ /* factorization B = U**T*U or B = L*L**T. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The length of the array WORK. LWORK >= max(1,3*N-1). */ /* For optimal efficiency, LWORK >= (NB+2)*N, */ /* where NB is the blocksize for DSYTRD returned by ILAENV. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: DPOTRF or DSYEV returned an error code: */ /* <= N: if INFO = i, DSYEV failed to converge; */ /* i off-diagonal elements of an intermediate */ /* tridiagonal form did not converge to zero; */ /* > N: if INFO = N + i, for 1 <= i <= N, then the leading */ /* minor of order i of B is not positive definite. */ /* The factorization of B could not be completed and */ /* no eigenvalues or eigenvectors were computed. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --w; --work; /* Function Body */ wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); lquery = *lwork == -1; *info = 0; if (*itype < 1 || *itype > 3) { *info = -1; } else if (! (wantz || lsame_(jobz, "N"))) { *info = -2; } else if (! (upper || lsame_(uplo, "L"))) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } else if (*ldb < max(1,*n)) { *info = -8; } if (*info == 0) { /* Computing MAX */ i__1 = 1, i__2 = *n * 3 - 1; lwkmin = max(i__1,i__2); nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1); /* Computing MAX */ i__1 = lwkmin, i__2 = (nb + 2) * *n; lwkopt = max(i__1,i__2); work[1] = (doublereal) lwkopt; if (*lwork < lwkmin && ! lquery) { *info = -11; } } if (*info != 0) { i__1 = -(*info); xerbla_("DSYGV ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form a Cholesky factorization of B. */ dpotrf_(uplo, n, &b[b_offset], ldb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem and solve. */ dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info); dsyev_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, info); if (wantz) { /* Backtransform eigenvectors to the original problem. */ neig = *n; if (*info > 0) { neig = *info - 1; } if (*itype == 1 || *itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */ /* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ if (upper) { *(unsigned char *)trans = 'N'; } else { *(unsigned char *)trans = 'T'; } dtrsm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[ b_offset], ldb, &a[a_offset], lda); } else if (*itype == 3) { /* For B*A*x=(lambda)*x; */ /* backtransform eigenvectors: x = L*y or U'*y */ if (upper) { *(unsigned char *)trans = 'T'; } else { *(unsigned char *)trans = 'N'; } dtrmm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[ b_offset], ldb, &a[a_offset], lda); } } work[1] = (doublereal) lwkopt; return 0; /* End of DSYGV */ } /* dsygv_ */