#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int dlaqr1_(integer *n, doublereal *h__, integer *ldh, doublereal *sr1, doublereal *si1, doublereal *sr2, doublereal *si2, doublereal *v) { /* System generated locals */ integer h_dim1, h_offset; doublereal d__1, d__2, d__3; /* Local variables */ doublereal s, h21s, h31s; /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Given a 2-by-2 or 3-by-3 matrix H, DLAQR1 sets v to a */ /* scalar multiple of the first column of the product */ /* (*) K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I) */ /* scaling to avoid overflows and most underflows. It */ /* is assumed that either */ /* 1) sr1 = sr2 and si1 = -si2 */ /* or */ /* 2) si1 = si2 = 0. */ /* This is useful for starting double implicit shift bulges */ /* in the QR algorithm. */ /* N (input) integer */ /* Order of the matrix H. N must be either 2 or 3. */ /* H (input) DOUBLE PRECISION array of dimension (LDH,N) */ /* The 2-by-2 or 3-by-3 matrix H in (*). */ /* LDH (input) integer */ /* The leading dimension of H as declared in */ /* the calling procedure. LDH.GE.N */ /* SR1 (input) DOUBLE PRECISION */ /* SI1 The shifts in (*). */ /* SR2 */ /* SI2 */ /* V (output) DOUBLE PRECISION array of dimension N */ /* A scalar multiple of the first column of the */ /* matrix K in (*). */ /* ================================================================ */ /* Based on contributions by */ /* Karen Braman and Ralph Byers, Department of Mathematics, */ /* University of Kansas, USA */ /* ================================================================ */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ h_dim1 = *ldh; h_offset = 1 + h_dim1; h__ -= h_offset; --v; /* Function Body */ if (*n == 2) { s = (d__1 = h__[h_dim1 + 1] - *sr2, abs(d__1)) + abs(*si2) + (d__2 = h__[h_dim1 + 2], abs(d__2)); if (s == 0.) { v[1] = 0.; v[2] = 0.; } else { h21s = h__[h_dim1 + 2] / s; v[1] = h21s * h__[(h_dim1 << 1) + 1] + (h__[h_dim1 + 1] - *sr1) * ((h__[h_dim1 + 1] - *sr2) / s) - *si1 * (*si2 / s); v[2] = h21s * (h__[h_dim1 + 1] + h__[(h_dim1 << 1) + 2] - *sr1 - * sr2); } } else { s = (d__1 = h__[h_dim1 + 1] - *sr2, abs(d__1)) + abs(*si2) + (d__2 = h__[h_dim1 + 2], abs(d__2)) + (d__3 = h__[h_dim1 + 3], abs( d__3)); if (s == 0.) { v[1] = 0.; v[2] = 0.; v[3] = 0.; } else { h21s = h__[h_dim1 + 2] / s; h31s = h__[h_dim1 + 3] / s; v[1] = (h__[h_dim1 + 1] - *sr1) * ((h__[h_dim1 + 1] - *sr2) / s) - *si1 * (*si2 / s) + h__[(h_dim1 << 1) + 1] * h21s + h__[ h_dim1 * 3 + 1] * h31s; v[2] = h21s * (h__[h_dim1 + 1] + h__[(h_dim1 << 1) + 2] - *sr1 - * sr2) + h__[h_dim1 * 3 + 2] * h31s; v[3] = h31s * (h__[h_dim1 + 1] + h__[h_dim1 * 3 + 3] - *sr1 - * sr2) + h21s * h__[(h_dim1 << 1) + 3]; } } return 0; } /* dlaqr1_ */