#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int ddisna_(char *job, integer *m, integer *n, doublereal * d__, doublereal *sep, integer *info) { /* System generated locals */ integer i__1; doublereal d__1, d__2, d__3; /* Local variables */ integer i__, k; doublereal eps; logical decr, left, incr, sing, eigen; extern logical lsame_(char *, char *); doublereal anorm; logical right; extern doublereal dlamch_(char *); doublereal oldgap, safmin; extern /* Subroutine */ int xerbla_(char *, integer *); doublereal newgap, thresh; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DDISNA computes the reciprocal condition numbers for the eigenvectors */ /* of a real symmetric or complex Hermitian matrix or for the left or */ /* right singular vectors of a general m-by-n matrix. The reciprocal */ /* condition number is the 'gap' between the corresponding eigenvalue or */ /* singular value and the nearest other one. */ /* The bound on the error, measured by angle in radians, in the I-th */ /* computed vector is given by */ /* DLAMCH( 'E' ) * ( ANORM / SEP( I ) ) */ /* where ANORM = 2-norm(A) = max( abs( D(j) ) ). SEP(I) is not allowed */ /* to be smaller than DLAMCH( 'E' )*ANORM in order to limit the size of */ /* the error bound. */ /* DDISNA may also be used to compute error bounds for eigenvectors of */ /* the generalized symmetric definite eigenproblem. */ /* Arguments */ /* ========= */ /* JOB (input) CHARACTER*1 */ /* Specifies for which problem the reciprocal condition numbers */ /* should be computed: */ /* = 'E': the eigenvectors of a symmetric/Hermitian matrix; */ /* = 'L': the left singular vectors of a general matrix; */ /* = 'R': the right singular vectors of a general matrix. */ /* M (input) INTEGER */ /* The number of rows of the matrix. M >= 0. */ /* N (input) INTEGER */ /* If JOB = 'L' or 'R', the number of columns of the matrix, */ /* in which case N >= 0. Ignored if JOB = 'E'. */ /* D (input) DOUBLE PRECISION array, dimension (M) if JOB = 'E' */ /* dimension (min(M,N)) if JOB = 'L' or 'R' */ /* The eigenvalues (if JOB = 'E') or singular values (if JOB = */ /* 'L' or 'R') of the matrix, in either increasing or decreasing */ /* order. If singular values, they must be non-negative. */ /* SEP (output) DOUBLE PRECISION array, dimension (M) if JOB = 'E' */ /* dimension (min(M,N)) if JOB = 'L' or 'R' */ /* The reciprocal condition numbers of the vectors. */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ --sep; --d__; /* Function Body */ *info = 0; eigen = lsame_(job, "E"); left = lsame_(job, "L"); right = lsame_(job, "R"); sing = left || right; if (eigen) { k = *m; } else if (sing) { k = min(*m,*n); } if (! eigen && ! sing) { *info = -1; } else if (*m < 0) { *info = -2; } else if (k < 0) { *info = -3; } else { incr = TRUE_; decr = TRUE_; i__1 = k - 1; for (i__ = 1; i__ <= i__1; ++i__) { if (incr) { incr = incr && d__[i__] <= d__[i__ + 1]; } if (decr) { decr = decr && d__[i__] >= d__[i__ + 1]; } /* L10: */ } if (sing && k > 0) { if (incr) { incr = incr && 0. <= d__[1]; } if (decr) { decr = decr && d__[k] >= 0.; } } if (! (incr || decr)) { *info = -4; } } if (*info != 0) { i__1 = -(*info); xerbla_("DDISNA", &i__1); return 0; } /* Quick return if possible */ if (k == 0) { return 0; } /* Compute reciprocal condition numbers */ if (k == 1) { sep[1] = dlamch_("O"); } else { oldgap = (d__1 = d__[2] - d__[1], abs(d__1)); sep[1] = oldgap; i__1 = k - 1; for (i__ = 2; i__ <= i__1; ++i__) { newgap = (d__1 = d__[i__ + 1] - d__[i__], abs(d__1)); sep[i__] = min(oldgap,newgap); oldgap = newgap; /* L20: */ } sep[k] = oldgap; } if (sing) { if (left && *m > *n || right && *m < *n) { if (incr) { sep[1] = min(sep[1],d__[1]); } if (decr) { /* Computing MIN */ d__1 = sep[k], d__2 = d__[k]; sep[k] = min(d__1,d__2); } } } /* Ensure that reciprocal condition numbers are not less than */ /* threshold, in order to limit the size of the error bound */ eps = dlamch_("E"); safmin = dlamch_("S"); /* Computing MAX */ d__2 = abs(d__[1]), d__3 = (d__1 = d__[k], abs(d__1)); anorm = max(d__2,d__3); if (anorm == 0.) { thresh = eps; } else { /* Computing MAX */ d__1 = eps * anorm; thresh = max(d__1,safmin); } i__1 = k; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ d__1 = sep[i__]; sep[i__] = max(d__1,thresh); /* L30: */ } return 0; /* End of DDISNA */ } /* ddisna_ */